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1. INTRODUCTION 

Dr. Sakine Çetin Taner 

 

Agriculture provides humanity with critical raw materials such as food, fiber and fuel, 

which are crucial for human subsistence. Today, this role needs to be fulfilled in the context of 

environmental sustainability and climate change. With the increasing human population, 

agricultural activities must maintain their continuity to ensure human livelihoods (Weiss et al., 

2020). The transition from intensive to sustainable agriculture should consider unexpected 

climatic conditions or extreme climatic events (e.g., changes in temperature and rainfall) 

(Tirado et al., 2010; Weiss et al., 2020). 

Agriculture is the primary sectoral user of freshwater worldwide and a significant source 

of environmental degradation (Zhang et al., 2019; Foster et al., 2020; Tang et al., 2020). As 

competition over limited land and water resources increases, policy makers in many regions 

seek to limit agricultural water withdrawals, improve irrigation water use efficiency, and 

develop new effective resource utilization strategies (Foster et al., 2020; Tang et al., 2020). The 

policies and interventions proposed or implemented by countries, pumping quotas, energy 

costs, taxes, water pricing, and many other factors vary between regions (Palazzo and Brozović, 

2014; Fishman et al., 2016; Aarnoudse et al., 2019; Rad et al., 2020; Rouillard, 2020; Sidhu et 

al., 2020). Despite the importance of monitoring for water management worldwide, most 

agricultural water use (from both groundwater and surface water) is not measured (Scanlon et 

al., 2012; Grafton, 2019; Hanemann and Young, 2020).  

Due to the technical, economic, and practical difficulties associated with on-site 

measurement, there is a need for water managers and researchers to monitor agricultural water 

use and plant growth and condition at different spatial and temporal scales for other purposes 

(Foster et al., 2020; Weiss et al., 2020). Real-time monitoring is essential to minimise the 

impacts of changing climatic conditions on the global food system and optimise agricultural 

water management practices sustainably (Wheeler and von Braun, 2013; Areal et al., 2018). 

Remote sensing is essential to respond to all these requirements locally and globally. The basic 

principle in remote sensing is using the electromagnetic spectrum (visible, infrared, and 

microwaves) to evaluate some features on Earth. The response of objects to different 
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wavelength regions varies, so they are used to distinguish vegetation, bare soil, water, and other 

similar features (Shanmugapriya et al., 2019). 

Monitoring agriculture through remote sensing is widely addressed with specific 

applications such as agricultural meteorology, precision agriculture, yield estimation, plant 

growth and development monitoring, vegetation mapping, disease and pest tracking, irrigation 

monitoring, and weed detection. Specific remote sensing platforms (e.g., satellites, Unmanned 

Aerial Vehicles (UAV), Unmanned Ground Vehicles (UGV), etc.) or sensors (e.g., active or 

passive sensing, wavelength domain, spatial sampling) are used in different locations and 

climates (e.g. country or continent, wetlands or drylands etc.) (Ambika et al., 2016; Deines et 

al., 2019; Vogels et al., 2019; Shanmugapriya et al., 2019; Weiss et al., 2020). 

This study aims to prepare a technical report on remote sensing techniques used in 

agricultural water management within the scope of this Erasmus+ project. For this purpose, in 

this study, the methods available in the literature from the past to the present and frequently 

used techniques have been compiled and brought together. 
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2. PRINCIPLES OF REMOTE SENSING  

 

Jitka Kumhálová                      František Kumhála 

 

Remote Sensing (RS) is a method of obtaining information about objects and phenomena 

on the surface of the planet Earth without the need for physical contact. The English term 

"Remote Sensing" was introduced in the mid-1950s by geographer and oceanographer Evelyn 

Pruitt from the U.S. Office of Naval Research as a reaction to the fact that the term "aerial 

photography" used until then no longer covered the actual state of the technologies used 

(Herring, 2005). 

Each Remote Sensing system consists of four essential components: 

• Observed scene (landscape, water objects, and others), including the surrounding 

environment (e.g., atmosphere) and their corresponding characteristics. 

• Energy sources (Electro-magnetic radiation : EMR) (Purcell and Morin, 2013). 

• Measuring equipment is placed on a suitable carrier (aircraft, satellite, drone, etc.). The 

apparatus usually consists of detectors of various types, such as cameras, radiometers, 

lasers, radio frequency receivers, radar systems, sonars, seismographs, gravimeters, and 

others). 

• A processing system consists of two processing stages – data pre-processing on board 

the carrier and data processing using a particular SW, including data processing using 

GIS tools. 
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2.1. Data acquisition system 

 

 

Figure 2.1 Data acquisition system (Anonymous, 2023a) 

Where (Figure 2.1): 

A : Source of Radiation: The first requirement of RS is to have a radiation source that interacts 

with the object under investigation. 

B : Radiation and the Atmosphere: As the radiation goes from the source to the target object 

and from the target object to the satellite, it passes through the atmosphere - where the radiation 

interacts and is modified. 

C : Interaction with target object: Once the radiation penetrates the atmosphere, it interacts with 

the object of interest. It depends here on the properties of the object, as well as on the properties 

of the radiation. 

D : Record of reflected radiation by the sensor: A recording occurs on the sensor after the 

radiation is reflected (or even the object itself can radiate). 

E : Transmission and Processing: The record is transferred, mostly in electronic form, to a 

receiving station, where the data is processed into an image; it often goes through pre-

processing and corrections. 

F : Interpretation and Analysis: Image processing and interpretation (visual, digital), 

information extraction, GIS. 
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G . Application: the last step of RS is obtaining information about the target object solving the 

problem – GIS application. 

 

Each image, like a map, contains two types of information: 

• About the type of object or phenomenon – thematic map 

• About the location of objects – topographic map 

Information about the type of objects or phenomena in the images is obtained through the 

process of interpretation and classification of the images. 

An essential part of RS is “Photogrammetry,” which deals with processing information about 

the correct position of objects in the images. It is a technical discipline that deals with the 

measurement properties of images to create accurate topographic maps. It was initially involved 

in the processing of aerial photographs. In recent decades, it has also been processing satellite 

images and images from unmanned aerial vehicles (UAV). 

 

Distribution of Remote Sensing of Earth methods: 

According to the image recording method: 

Classical - conventional 

• The result is a photograph in analog ("paper") form. 

• A photograph is created in a "moment." 

• Quality mostly depends on weather conditions. 

• It is geometrically accurate. 

• It has certain limitations regarding the analysis of thematic information. 

• The photographs cover a much larger time interval (half of the 20th century). 

Unconventional 

• Images are created gradually by scanning individual lines - the so-called line scanning. 

• Recording using radiometers – measures radiation. 

• Scanners – scanning decomposition devices 

• Smaller spatial resolution 

• Data on the wider part of EM spectra 

• Data in digital form 
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According to the source, Electro Magnetic (EM) radiation: 

Passive methods (Figure 2.2) 

• direct - the source of the Sun, the output is every photo. 

• Indirect – objects on Earth are the source of thermal imaging.  

 

 

Figure 2.2 Passive EM radiation (Dobrovolný, 1998). 

 

Active methods 

• the source is not of natural origin. 

• Is transmitted by a carrier. 

• E.g., radar systems. 

According to the type of carrier: 

• planes 

• satellites 

• UAVs 

• balloons 

• models 

According to the recordable part of the spectrum: 

• panchromatic – B&W 

• multispectral 
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• infrared 

• thermal 

• radar 

By colours: 

• B&W 

• colored – in false colors or natural colors 

 

2.2. Physical principles of Remote Sensing 

 

Substances of all states emit Electro Magnetic Radiation (EMR), the origin of which is 

related to the disordered movement of electrically charged particles in the electron shells of 

their atoms. We refer to such radiation as thermal radiation (Figure 2.3). 

 

 

Figure 2.3 Principles of EMR (Anonymous 2023b). 

 

All physical entities with an internal temperature above 0 K can be a source of energy 

in the form of thermal electromagnetic radiation. 

EMR is the vector as well as the object of the photon or energy flow. The energy is transported 

by the propagation of disturbances in electric (E) and magnetic fields (B): 

• EMR waves propagate at the speed of light c, where c = 300 000 km/second 

• Wavelength λ can be defined graphically as the interval or spacing between the wave 

crests. 

• Frequency (marked ν or μ) represents the number of wave crests that pass a particular 

point in space in one second. 

• EMR waves that have a constant frequency are called monochromatic. 
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• Wavelength is universally expressed in metric units such as μm or nm. 

• Frequency is expressed in Hertz. 

• The longer λ is, the lower the energy content or ν must be. 

• When EMR passes from one medium into another, λ and c change while ν is source-

specific and remains constant. 

EMR wave properties can be grouped in two categories: 

• Permanent characteristics (such as wavelength and frequency) - constant for a given 

observation system. 

• Variable characteristics (such as amplitude, phase, polarization and propagation 

direction) – the interaction between matter and energy may impact it. 

The energy E carried by a single photon of EMR with a specific frequency ν is given by: 

 

E = h ν 

𝑬= (𝒉 𝒄)/𝝀, where h = Planck`s constant  

 

The emission of EMR is, first and foremost, a product of thermal radiation, and the 

wavelength of the emittance is a function of the body's absolute temperature. 

In addition to emitting radiation, each body can reflect, transmit, and absorb radiation. The 

absorbed radiation is mainly converted into thermal energy. The amount of absorbed radiation 

depends on the properties of the body, especially the color (black bodies absorb more radiation 

than white) and the surface finish (radiation is reflected from shiny bodies, while dull bodies 

absorb more radiation). 

 

A physical abstraction is introduced for an easier and more accurate description of 

radiation sources - an absolutely black body (e.g. Planck, 1914). Its name corresponds to the 

fact that the black body perfectly absorbs all the energy that falls on the body. There is no 

radiation reflection, so this body appears perfectly black to us at low temperatures. 

A relatively good model of an absolute black body is a cavity, the inner surface of which is a 

matte black surface. If electromagnetic radiation penetrates through the opening, all the energy 

of the radiation is absorbed during repeated reflections from the walls of the cavity. The opening 

of the cavity then appears as a black body (Figure 2.4). 
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Figure 2.4 Model of “an absolute black body” (Dobrovolný, 1998). 

 

The first mentions of so-called thermal radiation appeared in the second half of the 18th 

century - Karl Scheele (1742-86). 

The first experiments were carried out by Marcus Pictet (1752-1825). 

Based on them, Pierre Prévost (1751-1839) assumed that each body radiates independently of 

its surroundings. 

Another shift was brought by the works of the German physicist Gustav Kirchhoff 

(Figure 2.5), who proved the relationship between the emission and absorption of radiation, 

founded the spectral analysis of substances, and defined the concept of an absolute black body. 

 

 

 

 

 

 

 

 

 

Figure 2.5 Gustav Kirchhoff  (Von Laue, 1958).   Figure 2.6 Wilhelm Wien (Von Laue, 1958). 

 

 

 

 

http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Kirchhoff.html
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Basic physical laws:  

• Wien’s displacement law: As the temperature increases, the peak exitance migrates 

toward the shorter wavelengths (e.g., A dictionary of Physics, 2009). Wilhelm Wied – 

Figure 2.6, Wien’s displacement law – Figure 2.7). 

𝝀𝒎𝒂𝒙= 𝒃/𝑻, where b = constant = 2898 μm.K;  

 

 

Figure 2.7 Wien’s displacement law (Anonymous, 2023c). 

Austrian physicists Josef Stefan and Ludwig Boltzmann also tried to describe blackbody 

radiation using classical physics, who derived the dependence of the intensity of blackbody 

radiation on its thermodynamic temperature. 

 

• Stefan Boltzmann’s law: The higher the temperature, the greater the spectral exitance. 

𝑬= 𝜺𝝈𝑻𝟒/𝝀, where E = radiant exitance; 𝝈 = Stefan Boltzmann constant; 𝜺 = emissivity factor; 

T = temperature in degrees Kelvin 

Each body with a non-zero absolute temperature radiates, with the radiation intensity (radiant 

flux density) being proportional to the fourth power of the absolute temperature (e.g., Siegel 

and Howell, 1992). 

However, they arrived at only approximate results, just like the Englishmen John Strutt 

(Lord Rayleigh) and Sir James Jeans, who derived the law describing the radiation of a black 

body. Unfortunately, it was only valid in the long-wave range of the spectrum. 

Only the German physicist Max Planck (Figure 2.8) removed all the shortcomings of the laws 

describing black body radiation. After graduation, despite the advice of his physics professor, 

he focused on physics, specifically classical thermodynamics and the description of blackbody 
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radiation. In deriving the properties of a black body, he introduced the simplifying assumption 

that a black body cannot emit or absorb energy in arbitrarily large quantities but only in specific 

"packages" - quanta. He assigned energy to each quantum of radiation that is directly 

proportional to the frequency of the radiation according to the following equation: 

 

Figure 2.8 Max Planck (Von Laue, 1958) 

 

 

Where E is the energy of a quantum of radiation; h is Planck’s constant (h = 6.626.10-34 J.s); f 

is frequency; c is the speed of light in a vacuum. 

Max Planck defined the theory: EM radiation consists of individual particles – photons, quanta. 

 

Summary 

• The longer the wavelength, the lower the energy content of the radiation. 

• Naturally, emitted long-wave radiation will be harder to detect than short-wave energy. 

• The low energy content of long-wave radiation means that systems operating in long 

wavelengths must scan large areas of the earth’s surface in one measurement to receive 

a signal that the measuring apparatus can record. 

• The higher the body's temperature, the more it will emit energy with a shorter 

wavelength. 

• “Hot” objects will intensely emit high-frequency, short-wave radiation. They will, 

therefore, be easily detectable by RS methods. 

• Conversely, “cold” objects will emit less intense long-wave radiation. They will be 

harder to detect. 

,


hc
hfE ==

http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Planck.html
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• However, the atmosphere transmits long-wave radiation well and absorbs and scatters 

short waves. 

 

• Kirchhoff‘s law 

Objects of the same temperature can emit different amounts of energy, but always less than 

an absolute black body (e.g., Goody and Yung, 1989). 

The so-called emissivity (ε) is the ratio between the intensity of radiation of a real body (MR) 

and the intensity of radiation of a black body (MA) at a given temperature T: 

 

Emissivity is essential for determining the temperature characteristics of surfaces. 

 

Influence of electromagnetic radiation by the atmosphere 

The effects of the atmosphere on radiation characteristics depend on the following factors: 

• The length of the path that this radiation takes through the atmosphere. 

• Sizes of the emitted signal. 

• Atmospheric conditions. 

• Wavelength. 

Radiation is mainly influenced by absorption and scattering processes: 

• Dispersion causes higher values of measured radiation, especially in shorter 

wavelengths. 

• The measured values of electromagnetic radiation in longer wavelengths are then 

reduced by absorption. 

Scattering of radiation 

• Rayleigh scattering occurs on gas molecules or other particles significantly smaller than 

the wavelength – dust particles, oxygen, and nitrogen molecules; shorter wavelengths 

are scattered more than longer wavelengths. It is the dominant phenomenon at the upper 

boundary of the atmosphere; it causes the blue color of the sky. 

• Mie scattering occurs when the particles are approximately the same size as the 

wavelength of the radiation – dust, pollen grains, smoke, water vapor. It affects longer 

wavelengths. It is dominant in the lower layers of the atmosphere. 
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• Non-selective scattering – it does not depend on the wavelength. It, therefore, causes an 

equally intense scattering of all wavelengths in the visible part of the spectrum, and the 

result is, for example, the white color of clouds and fog (Figure 2.9). 

 

 

Figure 2.9 The types of scattering (Dobrovolný, 1998). 

 

The scattering of radiation in the atmosphere is primarily a function of wavelength. The 

intensity of molecular scattering is inversely proportional to the fourth power of the wavelength, 

where blue light (0.4 μm) is scattered 16 times more than infrared radiation with a wavelength 

of 0.8 μm. 

 

Absorption of radiation 

It is the cause of energy losses at a given wavelength. The main gases absorbing radiation 

are O3, CO2, and water vapor. The mentioned gases absorb radiation with varying intensity in 

certain wavelength intervals, making it practically impossible to record and measure the 

intensity of EM radiation. Parts of the EM spectrum unaffected by absorption and scattering are 

called atmospheric windows (Table 2.1). 
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Table 2.1 The main atmospheric windows. 

Part of EM spectrum Interval of wavelength (µm) 

UV /visible 0.30 – 0.75 

0.77 – 0.91 

Near-infrared 1.00 – 1.12 

1.19 – 1.34 

1.55 – 1.75 

2.05 – 2.40 

Middle infrared 3.50 – 4.16 

4.50 – 4.00 

Thermal infrared 8.00 – 9.20 

10.20 – 12.40 

17.00 – 22.00 

 

Impact of radiation on the earth’s surface 

• EM energy can be reflected or absorbed. 

• Two objects that reflect similar amounts of radiation in one wavelength interval may 

reflect different amounts of energy in another interval. 

• The amount of absorbed or reflected energy affects the physical and chemical properties 

of surfaces (temperature, water or organic matter content, surface roughness, etc.). 

• Static and dynamic parameters. 

• The reflective properties of surfaces, depending on the wavelength and the physical and 

chemical properties of the surfaces, shape their so-called spectral behavior. 

 

2.3. Basic areas of the spectrum usable in Remote Sensing 

Because of the atmosphere (absorption and scattering radiation), images can only be created 

in certain parts of the spectrum (Figure 2.10) (e.g. Browne, 2013): 

• Ultraviolet radiation – ultraviolet (UV): 0.1 – 0.4 µm 

• Visible radiation – visible (VIS): 0.4-0.7 µm 

• Near infrared radiation – near infrared (NIR or IR): 0.7 – 1.4 µm 

• Middle infrared radiation (MIR): 1.4 – 3 µm 



   
 

18 
 

• Thermal radiation – thermal infrared – thermal (TIR or IR): 3 µm – 1 mm 

• Microwave radiation – microwave: 1 mm – 1 mm 

 

 

Figure 2.10 Electromagnetic spectrum (Dobrovolný, 1998). 

 

Ultraviolet rays 

• It is radiation harmful to living organisms. 

• Only a small part is released to the earth's surface. 

• In RS, it is used in the form of a so-called UV laser. 

• It can be used to search for gold deposits and monitor oil spills. 

• This radiation also passes through the water column to some extent. 

• Many minerals emit characteristic radiation at these wavelengths (used in mineralogy). 

• The intensity of absorption of UV radiation by O3 is used to monitor the strength of the 

ozone layer. 

 

Visible radiation 

• In the field of visible radiation, all conventional methods work, as well as most satellite 

systems. 

• It is the most used part of the spectrum, especially from a historical point of view. 

• It does not pass through clouds and fog; it can only be recorded during daylight hours. 

• Considerable scattering and absorption result in, for example, a loss of contrast in visible 

images. 
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• Compared to other wavelengths, this radiation can pass through the water column – 

especially in the blue part of the spectrum. 

• This makes it possible to study many physical and biological properties of water bodies. 

• Individual rocks, minerals, or soil do not show differences in spectral behavior in the 

visible part of the spectrum. 

 

Near-infrared (NIR – near infrared) 

• It forms a continuation of the atmospheric window from the visible part of the spectrum. 

• It can be recorded electronically by conventional photographic methods (up to 0.9 μm). 

• It is already less absorbed and scattered by the atmosphere. 

• As a result, images are sharp with good contrast. 

• Suitable for topographical purposes, these wavelengths are essential for studying 

vegetation, especially in forestry and agriculture. 

• Water behaves almost like an absolute black body at these wavelengths. 

 

Mid-infrared 

• It includes two atmospheric windows with centers of approximately 1.5 and 2.2 μm. 

• Both are important primarily for vegetation and geological studies. 

• The first window, for example, enables a good differentiation of vegetation types. It is 

suitable for recognizing ice and snow, distinguishing cloudiness, and studying 

vegetation's health status. 

• The second window is the region where many minerals have a characteristic absorption 

band. 

• The amount of reflected radiation is significantly greater than that of emitted radiation. 

Due to this small amount of radiation emitted, near and mid-infrared wavelengths 

cannot be used to determine the thermal properties of surfaces. 

• This is only possible in thermal infrared radiation, where the proportion of emitted 

radiation is more significant. 

 

Thermal Infrared Radiation (TIR) 

• It contains two atmospheric windows at 3–5 and 8–14 μm intervals. 
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• The images are used, for example, to determine the sea surface temperature, to map the 

thermal pollution of rivers and lakes and the landscape itself, to locate forest fires, etc. 

• Since the amount of reflected radiation is still relatively large in the 3-5 μm region, only 

night hours can be used to measure the radiation temperature. 

• In the area of 8-14 μm, the amount of reflected solar radiation is already minimal 

compared to the emitted radiation; these wavelengths can then be used to determine the 

radiation temperature even during daylight hours. 

• Accurate quantitative measurements require a good knowledge of the so-called 

emissivity of objects and processes that affect radiation in the atmosphere. 

• In the case of accurate calibration, the images allow us to obtain knowledge about the 

thermal balance of objects. 

 

Microwave radiation 

• It is used by both passive and active methods (RADAR). 

• These long wavelengths can also penetrate below the surface under suitable conditions. 

• It is the least envious of weather conditions; it is significantly weakened only in case of 

heavy rain. 

• The intensity of naturally emitted microwave radiation is very low, so the measuring 

device must measure this radiation over a relatively large area to capture a detectable 

signal. 

• This is the reason for the small spatial resolution of data obtained by passive methods 

of the microwave part of the spectrum. 

• Active systems record considerable development, providing data that can be used 

primarily for studying relief, floating ice, geomorphology, forestry, and agriculture. 

• Active microwave systems can be used to obtain non-image data, information on 

altitude conditions, several meteorological elements, etc. 
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3. SATELLITE SYSTEMS SUITABLE FOR AGRICULTURAL USE 

 

Atila Bezdan,      Jovana Bezdan,     Boško Blagojević 

 

With the rising global population and the imperative for sustainable development to 

maintain an equilibrium worldwide and meet human needs, the agricultural sector has utilized 

technological advancements for effective decision-making, promoting sustainable utilization of 

natural resources (Dakir et al., 2021). Digital agriculture has revolutionized farming, making it 

more efficient and more innovative (Shepherd et al., 2020). The central principle involves 

observing and regulating the variability in agricultural fields using intelligent technologies to 

enhance productivity. Various methods are now utilized in digital agriculture, including big data 

analytics, the Internet of Things (IoT), and remote sensing technologies (Wei et al., 2020). 

Satellite Earth observation (EO) is a type of remote sensing that aims to gather data from 

platforms as far away as 36,000 km in space about the Earth's surface and atmosphere (Zhao e 

al., 2022; AHDB, 2018). The resulting data comes from various satellite missions with various 

sensors and mission goals rather than from a single satellite operation.  

Earth observation satellites (EOS) have been in orbit since the early 1970s. There is an 

extensive range of satellite data accessible for various spatial/temporal resolutions and related 

expenses, both commercial and open-source (AHDB, 2018). Publicly-owned satellites offer 

openly accessible imagery with a spatial resolution of up to 10 meters, and commercial satellites 

provide high-resolution images of up to 0.25 meters.  

The recent aggravation of the food scarcity issue prompted us to reexamine another 

essential function of EO-satellites, which is to help the agro-industrial sector. Modern satellite 

monitoring systems aid in managing crop output levels, implementing scheduled crop 

irrigation, and promptly detecting pest and drought threats, all of which help preserve crops 

(MaxPolyakov, 2023). Farmers can make better judgments regarding their livestock and crops 

thanks to the unparalleled precision that satellites deliver (Frąckiewicz, 2023). The use of new 

technologies, like those provided by satellites, holds great promise for helping growers with a 

variety of tasks, including determining when to harvest, forecasting in-season yields, 
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identifying and managing pests and diseases, understanding the water and nutrient status, 

organizing crop nutrition programs, and guiding in-season irrigation.  

Crops were previously farmed without the assistance of space technology, but with the 

advent of precision agriculture and its deployment, the range of relevant information has 

increased dramatically. Precision farming uses the data from remote monitoring to apply 

differentiating fertilizer, protect plants, apply dosed irrigation, manage crops and yields, and 

perform numerous other farming operations that ultimately conserve resources and lower 

expenses by contributing to higher yields (Innovatione, 2020). 

 

3.1. EOS agricultural measurements 

Enhancing the management of crops and their inputs requires utilizing spatial 

information. Current crop mapping allows farmers to anticipate yields more precisely, analyze 

crop status, and apply inputs like fungicides, growth regulators, and fertilizer. It also gives 

government and research organizations a way to monitor agricultural activities. A growing 

amount of timely, within-season geographical information is being delivered through EO 

measurements (AHDB, 2018). Whether obtained via a satellite, airplane, or unmanned aerial 

vehicle (UAV), EO data can reveal details about the canopy surface and/or its structure (Zhao 

et al., 2022). Greenness and chlorophyll content, damage from disease and pests, and the 

presence of undesirable species like weeds are all considered when measuring the canopy's 

surface. Measurements of the canopy structure may include crop height, biomass, and leaf area 

index (LAI). Growers can utilize these many measures when combined to help guide their 

management choices, as shown in Figure 3.1 (AHDB, 2018). 

As previously mentioned, EOS sensors measure crop reflectance and structure, which can 

be linked to biophysical attributes, including height, yield, growth stage, and LAI (Huete et al., 

1994). It is crucial to remember that EOS rarely offers direct measurements of these biophysical 

characteristics; instead, it is typical to apply crop models to connect EO observations to relevant 

crop dynamics by utilizing EOS data in a data science method (AHDB, 2018). 

Much research has gone into yield prediction in agriculture, and several models have been 

created for various crops, including potatoes, wheat, maize, and sugar beet (Sharifi, 2021; 

Rembold et al., 2013). Several direct ground measures of the crop are typically taken throughout 

the year to track productivity. These measurements include the tiller number, leaf area index, 

crop height, and weed infestation. Regression against previously measured yield data is 
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typically used to anticipate yield afterward. Yield models progressively incorporate essential 

characteristics that can be calculated from EO, such as vegetation indices that infer LAI or weed 

infestations from high spatial resolution data. In this case, the primary benefit of EO is its 

capacity to quickly evaluate parameters over far wider spatial areas than can be observed on the 

ground (AHDB, 2018). More complex numerical agricultural models that estimate crop 

biomass, health, and yield using agro-meteorological parameters (such as temperature, rainfall, 

radiation, crop type, soil type, and nutrient availability) can also be integrated with EO data. 

 

 

Figure 3.1 Understanding of crops through EO. Image credit: Satellite Applications Catapult 

(AHDB, 2018) 

 

3.2. EOS for monitoring environmental parameters 

The capacity of EO to continuously and routinely monitor large areas of land and 

atmosphere gives it its power. Various EOS sensors can be utilized to track common 

environmental factors, such as vegetation, hydrological parameters, land/soil properties, and 

atmospheric variables that are employed in an environmental impact assessment. Table 3.1 

gives an evaluation summary of EOS's suitability for monitoring environmental parameters 

(AHDB, 2018). 
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Table 3.1 Suitability of earth observation satellites for monitoring environmental parameters 

 

 

3.3. Most commonly used satellite systems for agricultural use 

- Sentinel 2  

Sentinel 2 mission (Figure 3.2) was launched within the European Commission’s 

Copernicus program on June 23, 2015. It was made to deliver a large number of data and 

images. The satellite (Image 8.) is equipped with multispectral sensors for capturing Sentinel 2 

images with a resolution from 10 to 60 meters in the visible, near-infrared, and short-wave 
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infrared spectrum, including 13 spectral channels, which ensures the capture of differences in 

vegetation state, including temporal changes. Also, it minimizes the impact on the quality of 

atmospheric photography. Four channels are at 10 m (B2, B3, B4, and B8), six at 20 m (B5, B6, 

B7, B8A, B11, and B12) and three channels at a spatial resolution of 60 m (Table 3.2). The orbit 

is at an average height of 785 km, and two satellites in the mission allow repeated examinations 

every 5 days at the equator and every 2 - 3 days at mid-geographical latitudes. The Sentinel 2 

mission consists of two identical satellites (Sentinel 2A and Sentinel 2B) positioned 180° apart. 

Sentinel 2A was launched on June 23, 2015, and Sentinel 2B on March 7, 2017. 

 

 

Figure 3.2 Sentinel 2 Satellite (Anonymous, 2023a)  

 

Copernicus is the European Commission's Earth Observation program's new name, 

formerly GMES (Global Monitoring for Environment and Security). The new name was 

announced on December 11, 2012, by Antonio Tajani, Vice-President of the EC (European 

Commission), during the Competitiveness Council. 

Sentinel 2 is a multispectral operational visual mission within the Copernicus program, 

jointly implemented by the EC (European Commission) and ESA (European Space Agency), 

for global land observation (data on vegetation, soil, and water coverage for terrestrial, inland 

waterways, and coastal areas, as well as for the correction of data on atmospheric absorption 

and distortion) at high resolution with a high revisit capability to ensure more excellent 

continuity of data previously provided by SPOT-5 and Landsat-7. 
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Table 3.2 Spectral bands for the Sentinel-2 sensors 

 

 

Sentinel 2 is part of the Copernicus program, the most extensive individual Earth 

observation program, led by the European Commission in partnership with the European Space 

Agency. Each of the Sentinel 2 mission satellites has an optical instrument capable of capturing 

in 13 spectral bands: four channels at 10 m, six channels at 20 m, and three channels at 60 m 

spatial resolution. The width of the orbital swath is 290 kilometers. Sentinel 2 continuously 

collects images from two Earth observation satellites that provide images for any location 

worldwide every 5 to 7 days. 

The mission supports a wide range of services and applications, such as agricultural 

monitoring, emergency management, land classification, and water quality. 

 

- Landsat 9 (https://landsat.gsfc.nasa.gov/satellites/landsat-9) 

Since 1972, Landsat satellites (Figure 3.3) have continuously recorded data about the 

Earth's surface, coastal zones, coral reefs, etc. The Landsat program was created in 

collaboration between the US Geological Survey (USGS) and the National Aeronautics and 

Space Administration (NASA) to capture images of the Earth's surface from space. 
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Figure 3.3 A Landsat Timeline (Anonymous, 2023b)  

 

The U.S. Geological Survey (USGS) and the National Aeronautics and Space 

Administration (NASA) collaborated to create Landsat 9, which carries on the vital function 

that Landsat played in repeating worldwide observations for monitoring, comprehending, and 

managing Earth's natural resources. 

The Landsat 9 instrument system is an enhanced version of the Landsat 8 instrument, 

which is now gathering data superior to that of prior-generation Landsat satellites in terms 

of radiometric and geometric quality. 

The Thermal Infrared Sensor 2 (TIRS-2) and Operational Land Imager 2 (OLI-2) are the 

satellite's scientific instruments. The TIRS-2 measures the heat, or thermal infrared radiation, 

released from the Earth's surface. The OLI–2 records the Earth's surface observations in the 

visible, near-infrared, and shortwave-infrared bands. The mission design life of OLI and TIRS 

is five years, whereas the spacecraft's consumables last for more than ten years. 

Higher radiometric resolution for OLI-2 (14-bit quantization up from 12-bits for Landsat 

8) is one of Landsat 9's advancements. This allows sensors to pick up on more minute details, 

particularly over darker regions like dense woods or bodies of water. Landsat 9 has a greater 

radiometric resolution and can distinguish 16,384 colors of a particular wavelength. In contrast, 

Landsat 7's 8-bit resolution allows it to distinguish only 256 hues, while Landsat 8's 12-bit data 

allows it to detect 4,096 shades. Better atmospheric correction and more precise surface 

temperature measurements are made possible by TIRS-2's substantial reduction of stray light 

compared to the Landsat 8 Thermal Infrared Sensor (TIRS) and the enhancement of OLI-2. 

 

OLI-2, or Operational Land Imager 2 

Landsat 8's OLI was replicated in the design of OLI-2, which offers imagery that is 

compatible with Landsat's past spectral, spatial, radiometric, and geometric characteristics. 
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Except for the panchromatic band, which has a GSD of 15 meters, OLI-2 will give data for nine 

spectral bands with a maximum ground sampling distance (GSD), both in-track and cross-track, 

of 30 meters (m). To guarantee radiometric stability and precision, OLI-2 offers both internal 

calibration sources and the capability to carry out solar and lunar calibrations. Boulder, 

Colorado-based Ball Aerospace is the designer of OLI-2.  

 

Nine bands of the spectrum: 

• Band 1: Aerosol Visible Coastal (0.43 - 0.45 µm) 30 m 

• Visible Blue Band 2 (0.450 - 0.51 µm) 30 m 

• Visible Green Band 3 (0.53 - 0.59 µm) 30 m 

• Red Band 4 (0.64–0.67 µm) 30 m 

• Near-Infrared Band 5 (0.85 - 0.88 µm) 30 m 

• SWIR Band 6 (1.57 - 1.65 µm) 30 m 

• SWIR 2, Band 7 (2.11 - 2.29 µm) 30 m 

• Panchromatic Band 8 (PAN): 0.50 - 0.68 µm 15. 

• Cirrus Band 9 (1.36 - 1.38 µm) 30 m 

• TIRS-2: Thermal Infrared Sensor 

 

TIRS-2: Thermal Infrared Sensor 

Using the same technology used for TIRS on Landsat 8, Landsat 9's Thermal Infrared 

Sensor 2 (TIRS-2) measures thermal radiance emitted from the land surface in two thermal 

infrared bands. However, TIRS-2 is an improved version of Landsat 8's TIRS in terms of 

instrument risk class and design to minimize stray light.  TIRS-2 offers two spectrum bands 

with a maximum ground sampling distance of 100 meters (328 feet) for each band, both in-

track and cross-track. TIRS-2 has space view capabilities in addition to an internal blackbody 

calibration source. NASA's Goddard Space Flight Center in Greenbelt, Maryland, is responsible 

for designing TIRS-2.  

Two bands of spectrum: 

• 100-meter Band 10 TIRS 1 (10.6 - 11.19 µm) 

• 100-meter Band 11 TIRS 2 (11.5 - 12.51 µm) 

 



   
 

30 
 

Spectral Sensing of Cropland 

It should be highlighted that satellite monitoring encompasses more than just the 

customary optical satellite observations of crop development. The technique of remote satellite 

sensing the earth's surface using various types of sensors is the most significant resource for 

precision farming. This kind of EO provides images of the Earth's surface in different 

electromagnetic spectrums. These spectra and a standard optical camera are invisible to the 

naked eye, but they show much important information about the vegetation process. 

The following text briefly describes some of the most commonly used satellite-based 

indices. 

 

Satellite-based indices 

- NDVI 

The Normalized Difference Vegetation Index (NDVI) is the most often used metric for 

determining the degree of greening from orbit (DeFries and Townshend, 1994; Carlson and 

Ripley, 1997; Pettorelli, 2005). The index shows the degree of greening of the scanned surface. 

The NDVI indicator, which is based on spectrum analysis, makes it possible to observe the 

details of the vegetation process that are connected to illnesses, dryness, and other unfavorable 

circumstances that lower the degree of greening (MaxPolyakov, 2023). 

The method by which plants absorb visible light, known as photosynthesis, was visually 

defined and served as the foundation for the technology that first appeared in the 1980s 

(MaxPolyakov, 2023). During photosynthesis, plants intensively absorb light, which causes 

them to reflect a lot of near-infrared light (NIRB) into the surrounding air. The NDVI index, 

developed based on our understanding of the various infrared light reflections, enabled us to 

use remote sensing techniques to pinpoint the greenest regions (Figure 3.4-3.5). 

The maximum value of one on the NDVI index represents the glow reflected from 

healthy, densely growing plants. The index ranges from -1 to 1. The formula for calculating 

NDVI is: 
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Dense vegetation typically has NDVI values from 0.3 to 0.8. Clouds and snow cover have 

negative NDVI values. Water bodies (oceans, seas, lakes, and rivers) have a low reflection in 

both spectral ranges, so the NDVI for water surfaces has a very low or negative positive value. 

Bare soil has a minimal review in the near-infrared part, so the NDVI value is positive, ranging 

from 0.1 to 0.2. These numerical values are typically represented on the spectral picture as 

specific colors: green denotes a sufficient level of plant health, while yellow and red indicate 

the presence of sick or withering leaves (Figure 3.4-3.5).  

 

 

Figure 3.4 Agricultural plots shot with conventional RGB camera (left) and with the NDVI 

(right) 

 

Figure 3.5. Example of NDVI image 
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Note that the NDVI is not a universal vegetation index that can be applied to every aspect 

of farming. Numerous more indices are available to assist in analyzing a variety of vegetative 

cycle-related data depending on different characteristics. Other indices may be used to identify 

crops based on their spectral imprint, measure leaf chlorophyll levels and provide an area index, 

detect pest and disease outbreaks promptly, and offer information on the kind of soil and 

moisture saturation. 

 

-SAVI 

The Soil-Adjusted Vegetation Index (SAVI) index represents a modification of NDVI to 

eliminate the influence of the atmosphere and soil. It attempts to minimize soil brightness 

influences using a soil-brightness correction factor. SAVI is often used in arid regions with low 

vegetative cover (Huete, 1988). It is calculated using the following formula: 

 

The L value varies based on the extent of green vegetation cover. Typically, in regions 

with no green vegetation, L equals 1; in zones with moderate green vegetation, L is set at 0.5; 

and in areas with extremely dense vegetation cover, L is 0 (making it analogous to the NDVI 

method). The range of values produced by this index spans from -1.0 to 1.0. In the example in 

Figure 3.6 and in the case of NDVI, the difference between the presence of vegetation (green 

color) and the fragile presence of vegetation (red color) is clearly visible. 

 

- EVI 

The Enhanced Vegetation Index (EVI) was developed to optimize the vegetation signal 

and improve the sensitivity to improve vegetation monitoring through a de-coupling of the 

canopy background signal and atmosphere influences (Liu and Huete, 1995). EVI is calculated 

as follows: 

 

Where: 

- NIR, Red, and Blue are atmospherically-corrected surface reflectances; 

- L is the canopy background adjustment that addresses non-linear, differential NIR and 

red radiant transfer through a canopy; 
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- C1, C2 are the coefficients of the aerosol resistance term, which uses the blue band to 

correct for aerosol influences in the red band.; 

- G is a gain factor. 

The coefficients' Usual values are C1 = 6; C2 = 7,5; G = 2,5; L = 1. 

The NDVI index is sensitive to chlorophyll, while the EVI (Figure 3.7) index is more 

sensitive to the structural variation of vegetation, such as vegetation type and plant 

physiognomy. These two indices are complementary and are often used together in the study of 

changes in the biophysical characteristics of vegetation. The value of the EVI index ranges from 

-1 to +1, and the usual vegetation values are from 0.2 to 0.8. EVI is most often used to estimate 

biomass, determine biophysical characteristics of vegetation, and quantify evapotranspiration 

or water use efficiency. 

 

 

Figure 3.6 Example of SAVI image 

 

 

Figure 3.7 Example of EVI image 
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- NDWI (McFeeters, 1996) 

The Normalized Difference Water Index (NDWI) is utilized to higlight open water areas 

in satellite imagery, enabling the clear distinction of water bodies from surrounding soil and 

vegetation. Introduced by McFeeters in 1996, the NDWI index is primarily employed nowadays 

for detecting and tracking subtle variations in the water content of bodies of water. By 

leveraging the NIR (near-infrared) and GREEN (visible green) spectral bands, the NDWI 

(Figure 3.8) effectively highlights water bodies in satellite imagery. However, a limitation of 

this index is its sensitivity to artificial structures, potentially resulting in overestimating water 

body areas. NDWI is calculated as follows: 

 

The NDWI values correspond to the following ranges: 

• +0,2 – 1.0 Water surface, 

• +0.0 – 0,2 Flooding, humidity, 

• -0,3 – 0.0 Moderate drought, surfaces not containing water, 

• -1.0 – -0.3 Drought, surfaces not containing water. 

 

 

Figure 3.8 Example of NDWI (McFeeters, 1996) image 

 

- NDWI (Gao, 1996) 

The Normalized Difference Water Index (NDWI) uses the NIR-SWIR (near-infrared and 

short-wave infrared) combination to enhance the presence of water in the leaves of plants. 

NDWI is widely recognized as a reliable indicator of plant water content, making it an effective 
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measure of plant water stress. NDWI is used to monitor changes in the water content of leaves, 

using near-infrared (NIR) and short-wave infrared (SWIR) wavelengths, as proposed by Gao in 

1996. Reflectance in the SWIR spectrum indicates alterations in vegetation's water content and 

the porous mesophyll structure within plant canopies. Meanwhile, NIR reflectance is influenced 

by the internal structure of leaves and their dry matter content, but it remains unaffected by 

water content (European Commission, 2011). 

 

NDWI is calculated as follows: 

 

 

The NDWI (Figure 3.9) values vary between -1 to +1, depending on the leaf water content 

and the vegetation type and cover. High values of NDWI correspond to high vegetation water 

content and high vegetation fraction cover. Low NDWI values correspond to low vegetation 

water content and low vegetation fraction cover. In periods of water stress, NDWI will decrease. 

 

 

Figure 3.9 Example of NDWI (Gao, 1996) image 

 

Conclusion 

Controlling the entire farming process, from the seeding campaign to the harvest, is now 

feasible thanks to satellite monitoring. The increasing availability of satellite data and the 

expanding number of organizations offering it both significantly affect the evolution of 

successful EO technology integration in farms. Technological advancements in satellite 
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monitoring have also added to the growing appeal of EO: new camera types may provide 

farmers with incredibly clear views, making it harder to distinguish between high-resolution 

aerial photography and satellite imagery (MaxPolyakov, 2023).  

It is becoming increasingly apparent that the technology associated with precision 

farming will give rise to an entirely new, more intelligent, and cost-effective way of farming 

that will enable you to grow more and better while consuming fewer resources. It will be 

impossible to picture a farmer without connection with an orbiting satellite shortly, just as it 

was impossible to imagine one without a plow or a combine fifty years ago. 
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4. UAV SYSTEM SUITABLE FOR AGRICULTURAL USE 

 

Dr. Emre Tunca 

 

Agriculture plays a vital role in global food security and economic development. 

Advancements in technology, such as UAV systems, can revolutionize agricultural practices 

(Istiak et al., 2023; Kim et al., 2019). Unmanned Aerial Vehicles (UAVs) represent a significant 

technological advancement in the field of agriculture, increasing farming efficiency and 

sustainability (Aboutalebi et al., 2020). Since agriculture has always been a cornerstone of 

global food security and economic stability, it has always been open to new approaches to 

enhance productivity and resource efficiency (Gao et al., 2020). In this context, UAV has 

emerged as a powerful tool that provides detailed and rapid data collection capabilities that are 

superior to the traditional methods (Stanton et al., 2017; Tunca et al., 2018a). 

The application of UAVs in agriculture is diverse and impactful (Hassan et al., 2019; 

Tunca et al., 2018a). These systems are primarily used for precision farming (Candiago et al., 

2015), crop monitoring (Tunca et al., 2018a), disease detection (Shahi et al., 2023), and 

irrigation management (Tunca, 2023). By providing high-resolution aerial imagery, UAVs 

allow farmers to closely monitor crop health, assess soil conditions, and manage resources more 

effectively (Chang et al., 2017). This level of precision is particularly beneficial in optimizing 

the application of water, fertilizers, and pesticides, leading to increased yield and reduced 

environmental impact (Gao et al., 2023; Harkel et al., 2020; Messina and Modica, 2020; Tunca 

et al., 2018b). 

The benefits of UAVs in agriculture are multi-fold. As detailed by Tunca et al. (2018a), 

enhanced monitoring capabilities provide farmers with insights into crop health at a resolution 

unattainable by traditional methods. This high-resolution data is instrumental in resource 

optimization, reducing costs and environmental footprint, as Xie et al. (2021) discussed. 

Moreover, Istiak et al. (2023) highlighted the efficiency of UAVs in large-scale operations, 

where their ability to cover vast areas quickly is unmatched. 

However, integrating UAVs into agricultural practices is not free from challenges. 

Regulatory constraints, as discussed by Cho (2013), pose significant challenges in UAV 
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deployment. Technical limitations, including battery life and payload capacity, have been 

identified by Mohsan et al. (2022) as key areas needing improvement. The challenge of 

managing and processing the large volumes of data generated by UAVs is another aspect that 

has been brought to light by Alsamhi et al. (2022). Furthermore, the economic aspect, 

particularly the cost of acquiring and maintaining UAV systems, is a concern for smaller farms, 

as stated by Tunca et al. (2023). 

In conclusion, adopting UAV technology in agriculture is a significant step towards more 

efficient and sustainable farming practices. While the potential benefits are substantial, as 

evidenced by the existing literature, addressing the technical, regulatory, and economic 

challenges is crucial for maximizing their impact. The ongoing research and development in 

this field, as documented by Nassar et al. (2022) and Hou et al. (2021), continue to push the 

boundaries of what UAVs can achieve in agriculture, promising an even more innovative and 

productive future for the sector. 
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5. VEGETATION MAPPING AND MONITORING  

 

Dr. Sakine Çetin Taner 

 

Assessing and monitoring the condition of the Earth's surface is a fundamental 

requirement of global change research (Lambin et al. 2001; Jung et al. 2006; Xie e al., 2008). 

To better evaluate the environment and ecosystem, it is necessary to obtain regularly or annually 

updated data on changes in vegetation status (Knight et al. 2006; Xie e al., 2008). Vegetation 

canopy defines the main landscape features of nature, and vegetation health is an indicator of 

environmental processes occurring in soil-vegetation systems (Lemenkova, 2021). 

Classification and vegetation mapping are essential for natural resources management and 

global climate change (Xiao et al., 2004). 

It is often impossible to determine the vegetation covers using traditional methods (e.g., 

field surveys, literature reviews, map interpretation, and data analysis) because they are time-

consuming, outdated, and often too expensive. Remote sensing techniques provide a practical 

and economical tool for studying vegetation status and changes, especially over large areas 

(Langley et al. 2001; Nordberg and Evertson 2003; Xie et al., 2008). Vegetation mapping using 

remote sensing technology is used for different purposes such as plant classification, estimation 

of crop planting areas, canopy chlorophyll density, leaf area index, and yield estimation (Broge 

and Leblanc, 2001; Shanmugapriya et al., 2019; Lemenkova, 2021).  

Spektral Vegetation indices (VIs) are used to analyze vegetation distribution and 

healthiness. VIs differ in terms of algorithm approach and spectral band composition (extent of 

the data range) (Lemenkova, 2021). The Normalised Difference Vegetation Index (NDVI) 

proposed by Rouse et al. (1974) is widely used in the literature. The Soil Adjusted Vegetation 

Index (SAVI) proposed by Huete (1988) is an example of a vegetation index that limits the 

effect of soil on vegetation. Spektral vegetation indices such as Enhanced Vegetation Index 

(EVI), Simple Ratio (SR), vegetation condition index (VCI), and leaf area index (LAI) have 

also been applied in different studies and fields in the literature (Pereira et al., 2011; Peng et al., 

2011; Zambrano et al., 2016; Hossain et al., 2017; Hashimoto et al., 2019; Hama et al., 2021; 

Yan et al., 2021; Alahacoon et al., 2021). Some spectral vegetation indices (NDVI, SAVI, 

Renormalized Difference Vegetation Index (RDVI), Optimized Soil Adjusted Vegetation Index 
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(OSAVI) etc.) have been used with different parameters in some approaches for estimating plant 

water status (Rossini et al., 2013; Panadiga et al., 2014; Dangwal et al., 2015; Katsoulas et al. 

2016; Magney et al., 2016; Evanidi et al., 2017; Ihuoma and Madramootoo 2017, 2019). The 

basic equations of vegetation indices used for agricultural purposes are given in Table 1.  

 

Table 5.1 Some examples of vegetation indices used in the agricultural sector 

Index Equation References 

The Normalized Difference 

Vegetation Index (NDVI) 

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

Rouse et al. (1974) 

The Soil Adjusted Vegetation 

Index (SAVI) 
(1 + 𝐿) ×

(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝐿 + 𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 

 

Huete (1988) 

Enhanced Vegetation Index 

(EVI) 
𝐺 ×

(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

𝑁𝐼𝑅 + (𝐶1 × 𝑅𝐸𝐷 − 𝐶2 × 𝐵𝐿𝑈𝐸) + 𝐿
 

 

Liu and Huete, (1995) 

Simple Ratio (SR) 𝑁𝐼𝑅

𝑅𝐸𝐷
 

Jordan (1969) 

Normalized Difference Water 

Index (NDWI) 

𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 

Gao (1996) 

Land Surface Water Index 

(LSWI) 

𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 

Chandrasekar et al., 

(2010) 

Vegetation Condition Index 

(VCI) 
100 ×

𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 + 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

 
Kogan (1995) 

Leaf Area Index (LAI) 
−
ln((0,69 − 𝑆𝐴𝑉𝐼)/0,59

0,91
 

Bastiaanssen (1998) 

(DVI) NIR-RED Jordan (1969) 

Renormalized Difference 

Vegetation Index (RDVI) 
√𝐷𝑉𝐼 × 𝑁𝐷𝑉𝐼 Reujean and Breon 

(1995) 

Optimized Soil Adjusted 

Vegetation Index (OSAVI) 

1,5 × 𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 0,16
 

Rondeaux et al.. (1996) 

 

Regarding crop yield estimation, literature shows a strong relationship between crop yield 

and vegetation indices (Anderson et al. 1993; Shanahan et al. 2001; Wiegand and Richardson 

1990; Wylie et al. 1991). In most of these studies, a regression relationship was established 

between vegetation index and observed plant yield, and this relationship was then used to 

predict crop yields with new vegetation index information. For example, Bolton and Friedl 

(2013) established a linear regression model between yield and NDVI, EVI, and NDWI indices 

derived from MODIS satellite data in a study conducted in the Central United States. 

Tuvdendorj et al. (2019) found that a combination of NDWI, NDVI, and Visible and Shortwave 

Infrared Drought Index (VSDI) (Zhang et al. 2013) among the nine vegetation indices 

considered showed the best performance linearly with spring wheat yield. 
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In most of the studies, instead of using instantaneous satellite observations, the calculated 

vegetation indices are integrated over a while and correlated with the corresponding crop yield. 

This is mainly because the relationship between crop yield and spectral reflectance varies with 

plant growth (Labus et al. 2002). In addition, the temporal integration or aggregation of 

vegetation indices reduces the noise due to other factors on the vegetation (such as effects from 

soils and clouds). This leads to a better explanation of the total effect of photosynthesis 

(Benedetti and Rossini 1993). Aggregation can be performed by taking the maximum value of 

the vegetation index, averaging the peak values of the vegetation index, summing the vegetation 

index values in a crop cycle, or taking the vegetation index value during the end of the season. 

Funk and Budde (2009) reported that cumulative NDVI from mid- to late-season 

correlates better with crop yield compared to other methods. Lai et al. (2018) estimated wheat 

yield as a function of integrated NDVI (obtained during the growing season) calculated from 

Landsat satellite data with reasonable accuracy in a cereal-growing region in northern Australia. 

Mirasi et al. (2019) used the sum of NDVI values obtained from Landsat 8 satellite data (during 

the growing season) as an indicator to estimate wheat yield in Iran. In some studies, a non-linear 

regression approach was used to predict crop yields using vegetation index values (Holzapfel 

et al. 2009; Ma et al. 2001; Mkhabela et al. 2011).  

In recent years, complex regression and machine learning techniques have also been used 

to model crop yield and LAI using satellite sensor-based vegetation indices.  Some of these 

techniques include partial least square regression (Li et al. 2014; Nguyen and Lee 2006), 

artificial neural networks (ANN) (Johnson et al. 2016), support vector machines (Durbha et al. 

2007; Tuia et al. 2011), and random forests (Liang et al. 2015). 
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6. EVAPOTRANSPIRATION MAPPING BY USING REMOTE SENSING  

Atila Bezdan,      Jovana Bezdan,     Boško Blagojević 

The worldwide energy equilibrium considers the movement of energy within Earth's 

climate system and how it interacts with outer space, as depicted in Figure 6.1. Understanding 

the various energy movements between the atmosphere and Earth’s surface, exceptionally 

sensible (H) and latent (LE) heat fluxes, and soil moisture levels is crucial for numerous 

environmental purposes (Liou and Kar, 2014). This includes tracking plant water needs, growth, 

and yield and being vital for agricultural and irrigation management systems (Kustas et al., 

2004; Dodds et al., 2005; Consoli et al., 2006; Liou et al., 1999).  

 

 

Figure 6.1. Schematic diagram of the Earth's global mean annual energy balance (W·m−2). 

Numerical values are taken from (a) Kiehl el al. 1997 and (b) Wild et al. 2013. 

Evapotranspiration (ET) from land surfaces, encompassing both soil evaporation and 

plant transpiration to the atmosphere, is a significant process involving substantial water and 
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heat exchange between the Earth's surface and the lower atmosphere. This process is 

acknowledged as a crucial element in the hydrological cycle due to its extensive involvement 

in water and heat transfer (Allen et al., 2007; Long & Singh, 2013). The precise estimation and 

comprehension of the spatial-temporal variations of ET are essential for numerous applications. 

These include the development of water balances, monitoring droughts, forecasting crop yields, 

advancing precision agriculture, and managing water resources effectively (Bastiaanssen et al., 

2005; Bastiaanssen & Ali, 2003; Roerink et al., 1997; Ines et al., 2006; Li et al., 2013; Meng et 

al., 2014; Awan & Ismaeel, 2014; Courault et al., 2005). 

Evaporation is the primary mechanism for water removal from a watershed, while 

transpiration involves water release from plants and other living surfaces with moisture. As 

such, evapotranspiration, the combination of both evaporation and transpiration, plays a key 

role in the hydrological cycle. As the most significant water flux exiting Earth's surface, 

measuring evapotranspiration (ET) is essential for enhancing our understanding of various 

hydrological, climatic, and ecosystem dynamics. Accurate ET data is also valuable in numerous 

fields, including water resource management, drought surveillance, improving hydrological 

models, weather forecasting, and forest fire risk assessment (Anderson et al., 2007; 

Bastiaanssen et al.,2002).  

The ground-based tools for measuring latent (LE) and sensible (H) heat fluxes and soil 

moisture offer several benefits. However, they typically provide only localized data and can be 

expensive, time-consuming, labor-intensive, and prone to instrument failure. Combining 

ground data with remote sensing imagery can frequently offer extensive, repeated insights into 

critical parameters like land surface interactions and soil moisture. Various methods using 

diverse remote sensing data have been developed for this. Satellite remote sensing, in particular, 

has become a prominent tool for gathering spatially detailed information on surface fluxes, 

thanks to its comprehensive, non-intrusive coverage and ability to overcome accessibility 

issues. Various algorithms using different remote sensing data types, often combined with other 

surface and atmospheric data, have been created for parameter estimation. Using satellite data, 

particularly from optical and thermal infrared radiometers, has proven effective in retrieving 

LE and H fluxes and soil moisture variations. Thermal infrared data is especially useful for 

studying biophysical landscape characteristics and ecological modeling. These methods range 

from empirical to those based on the energy balance equation and the correlation between 
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satellite-derived vegetation indices and surface radiant temperatures. Recent methodologies 

include Moran et al. (2004), Courault et al., (2005), and others. 

Evapotranspiration (ET), encompassing both transpiration and evaporation, is a critical 

hydrological flux that is challenging to estimate, especially at larger scales. Traditional ET 

estimation methods, like lysimeters, eddy covariance, and others, are effective locally but 

struggle with large-scale applications due to land surface heterogeneity and complex 

hydrological processes. Remote sensing offers a promising alternative for mapping ET patterns 

at regional to mesoscale, using data from visible, near-infrared, and thermal infrared bands to 

retrieve critical surface and atmospheric variables. This technology provides broad coverage at 

a lower cost than conventional methods and is the only viable option for areas without ground 

measurements. Remotely sensed surface temperature data, varying in resolution, helps link 

surface radiances to energy balance components. 

 

6.1. Surface Energy Balance Models 

 

- Surface Energy Balance 

The surface energy balance at the land-air interface can be written as Equation (1) as 

follows, and the net radiation is considered as a residual of the soil heat flux, the sensible heat 

flux, and the latent heat flux: 

Rn= G+ H+ LE                 (1) 

where G is the soil heat flux (W·m−2), H is the sensible heat flux (W·m−2), and LE is the latent 

heat flux (W·m−2). Net radiation (Rn) is partitioned into G, H, and LE. It can be estimated from 

the sum of the difference between the incoming (Rs↓) and the reflected outgoing shortwave 

solar radiation (Rs↑) (0.15 to 5 μm), and the difference between the downwelling atmospheric 

(RL↓) and the surface-emitted and -reflected longwave radiation (RL↑). 

 

- Net Radiation (Rn) 

According to the radiation balance, the net radiation can be considered as a balance 

between incoming and outgoing short-wave and long-wave radiation under steady atmospheric 

conditions: 

R = R ↓ + R ↑ + R ↓ − R ↑                (2) 
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where Rn is the net radiation (W·m−2), Rs↓ is the incoming short-wave radiation (W·m−2), and 

Rs↑ is the outgoing short-wave radiation (W·m−2), while RL↓ is the incoming long-wave 

radiation (W·m−2), and RL↑ is the outgoing long-wave radiation (W·m−2). The net short-wave 

radiation can be written as follows: 

            (3) 

where α is the surface albedo, Sc is the solar constant (W·m−2), θ is the solar incidence angle, 

dr is the relative Earth-Sun distance, and τa is the atmospheric transmissivity. 

The incoming long-wave radiation is the downward thermal radiation flux from the 

atmosphere. The air emissivity can be estimated by a function of the water vapor, pressure, and 

temperature in the cloudless atmosphere: 

                 (4) 

where esky is the air emissivity, σ is the Stefan-Boltzmann constant (W·m−2·K−4), and Ta is the 

air temperature (K). The outgoing long-wave radiation is computed by using the Stefan- 

Boltzmann equation: 

                (5) 

where ε0 is the surface emissivity and Ts is the surface temperature (K). 

 

- Sensible Heat Flux (H) 

The sensible heat flux (H) is the rate of heat loss to the air by convection and conduction 

due to a temperature difference, which can be written as: 

                 (6) 

where ρair is the density of air (kg·m−3), Cp is the air specific heat (1004 J·kg−1·K−1), while dT 

is the difference between the air temperature and the aerodynamic temperature near the surface, 

(dT = Ta − Ts), calculated as set out in the SEBAL Users Manual (Waters et al., 2002) and rah 

is the erodynamic resistance. 

 

- Latent Heat Flux (LE) 

Latent heat flux is the rate of latent heat loss from the surface due to evapotranspiration. 

According to the Equation (1), the latent heat can be written as: 
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LE = Rn – G – H                 (7) 

 

6.2. Different Surface Energy Balance Algorithms 

A large number of remote sensing-based ET models rely on energy balance theory. Gowda 

et al. (2007) comprehensively reviewed these existing models based on energy balance. They 

discussed and compared a variety of ET models, including the Surface Energy Balance Index 

(SEBI) by Meneti and Choudhary (1993), the Surface Energy Balance System (SEBS) by Su 

(2002), the Simplified Surface Energy Balance Index (S-SEBI) by Roerink et al. (2000), the 

Two-Source Energy Balance model (TSEB) by Anderson et al. (1997), and the Surface Energy 

Balance Algorithm for Land (SEBAL) by Bastiaanssen et al. (1998). Additionally, they 

reviewed SEBAL-like ET estimation models such as the Satellite-based energy balance for 

mapping evapotranspiration with internalized calibration (METRIC) by Allen et al. (2007), 

TSEBAL by Wang et al. (2014), and M-SEBAL by Long and Singh (2012). 

 

- Surface Energy Balance Index (SEBI) 

Drawing from the differences between arid and humid areas, Menenti and Choudhury 

developed the Surface Energy Balance Index (SEBI) method, as outlined in their 1993 study 

(Choudhury and Menenti, 1993). This approach is used to calculate evapotranspiration based 

on the evaporative fraction and is inspired by the Crop Water Stress Index (CWSI) concept, 

introduced by Van den Hurk in 2001. The SEBI method operates by adjusting the measured 

surface temperature within a defined maximum range. This range is established by the extreme 

values in the surface energy balance, which represent theoretical minimum and maximum 

differences between surface and air temperatures. 

 

- Surface Energy Balance System (SEBS) 

The Surface Energy Balance System (SEBS) is another prominent model in the field. In 

various studies (Su et al. 2001, 2002) and Su et al. (2003, 2005), Su detailed a revised version 

of the SEBI method, now known as SEBS. This model is specifically designed for calculating 

land surface energy balance using data from remote sensing and standard meteorological 

sources. SEBS primarily focuses on estimating sensible and latent heat fluxes through satellite 

data. Its core methodology includes computation of land surface physical parameters, 

determining roughness length for heat transfer, and calculating the evaporative fraction, all 
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based on the energy balance under limiting conditions, as proposed initially by Choudhury in 

1989. 

 

- Simplified Surface Energy Balance Index (S-SEBI) 

Roerink et al. 2000 introduced a new, more straightforward approach derived from the 

SEBI model, the Simplified Surface Energy Balance Index (S-SEBI). This method is designed 

for estimating surface fluxes using remote sensing data. S-SEBI primarily relies on the contrast 

between maximum and minimum surface temperatures, dependent on surface reflectance 

(albedo) under dry and wet conditions, respectively. This contrast is crucial for dividing the 

available energy into sensible and latent heat fluxes. One of the critical advantages of S-SEBI 

is that it doesn't require additional meteorological data if the surface temperature extremes for 

the area under study are known. The method assumes constant global radiation and air 

temperature, allowing for a physical interpretation of the observed surface reflectance and 

temperature variations within an image, particularly in scenarios where surface characteristics 

vary between dark/wet and dry/bright pixels. 

 

- Surface Energy Balance Algorithm for Land (SEBAL) 

The Surface Energy Balance Algorithm for Land (SEBAL) is an image-processing model 

aimed at calculating evapotranspiration (ET) as a residual of the surface energy balance. It was 

developed in the Netherlands by Bastiaanssen et al., as detailed in their studies from 1998a and 

1998b. SEBAL is recognized as one of the most promising methods for estimating 

evapotranspiration at local and regional scales, requiring minimal ground data. It represents an 

intermediate approach that combines empirical relationships with physical parameterizations. 

The model utilizes digital satellite imagery data capable of measuring visible, near-

infrared, and thermal infrared radiation alongside Ts, NDVI, and albedo maps. It estimates 

latent heat flux (LE) as a residual of the energy balance equation on a pixel-by-pixel basis. Net 

radiation (Rn) is derived from the balance of short and longwave radiation, and soil heat flux 

(G) is calculated using an equation by Bastiaanssen, which is adaptable to various types of 

vegetation cover and soil. 

SEBAL's effectiveness has been confirmed under various climatic conditions, both at 

field and catchment scales. It has demonstrated typical accuracies of 85% at the field scale and 
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95% on daily and seasonal scales, respectively, as per the findings in Bastiaanssen et al., 1998b 

and 2005, with successful applications in over 30 countries globally. 

 

- Mapping Evapotranspiration at High Resolution and with Internalized Calibration 

(METRIC) 

Mapping Evapotranspiration at High Resolution with Internalized Calibration (METRIC) 

is a modification of the SEBAL energy balance model, initially developed in the Netherlands. 

METRIC is an image-processing tool designed for mapping regional evapotranspiration (ET) 

over complex surfaces by calculating the residual energy balance at the Earth's surface. This 

model expands on SEBAL by incorporating reference ET, which is calculated using terrestrial 

weather data. 

The core concept of METRIC, as highlighted by Allen et al. in their 2005 and 2007 studies, is 

that evaporation, involving liquid drops absorbing heat, can be tracked using remotely sensed 

data in the visible, near-infrared, and thermal infrared spectra. This is combined with ground-

based wind speed measurements and near-surface dew point temperature. METRIC employs 

two "anchor conditions" within a given scene for internal calibration. This calibration simplifies 

the computation of sensible and latent heat fluxes and sets the boundaries for the energy 

balance. 

This internal calibration process, akin to that in SEBAL, minimizes the need for atmospheric 

correction of surface temperature or reflectance measurements, as outlined by Tasumi et al. in 

2005. It also reduces potential biases in estimating aerodynamic stability correction or surface 

roughness. Calibration involves manually selecting a hot and a cold pixel to establish the range 

of vertical temperature gradients above the surface. The "cold" condition typically represents a 

well-irrigated alfalfa field where ET equals the reference ET for standardized 0.5 m tall alfalfa, 

while the "hot" condition is often a dry, bare agricultural field where ET is zero. 

 

- Two-Source Models (TSM) 

Norman and Becker introduced a novel approach in 1995, known as the two-source model, also 

called the dual-source model, to enhance the accuracy of latent heat (LE) estimations from 

satellite remote sensing data, particularly over sparsely vegetated areas. This development is 

detailed in their work (Norman and Becker, 1995) as well as in related studies by Blyth and 
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Harding (1995), Huntingford et al. (1995), Kabat et al. (1997), Wallace (1997), and Priestley 

and Taylor (1972). 

The fundamental concept of this model involves separating the composite radiometric 

surface temperature into two distinct components: soil and vegetation. It then accounts for the 

sensible and latent heat fluxes transferred to the atmosphere from both surface elements. A vital 

advantage of the dual-source model is its independence from ground-based information or any 

prior calibration. This aspect significantly broadens its applicability, allowing for accurate 

estimations without additional input data. 

 

6.3. Example: Surface energy balance using the METRIC model and water R 

package 

In the following text we describe the application of the METRIC model for calculating 

the surface energy balance using the Water R package. The following material was developed 

by Guillermo Federico Olmedo and Daniel de la Fuente-Saiz 

(http://cran.nexr.com/web/packages/water/). This example presents the procedure to estimate 

the Land Surface Energy Balance (LSEB) using lansat imagery and the Water R package. It 

follows the METRIC model methodology (Allen et al., 2007) to estimate the LSEB using 

Landsat 7 and 8 satellite images. The Water R package can be found at: 

 

 http://cran.nexr.com/web/packages/water/  

 

https://github.com/midraed/water 

 

General Aproach 

One of the most cited models to estimate land surface evapotranspiration from satellite-

based energy balance is the Mapping of EvapoTranspiration at high Resolution with 

Internalized Calibration (METRIC). This model was developed by Allen et al., (2007) based on 

the well-known SEBAL model (Bastiaanssen, 1998). Satellite images have been widely applied 

in many countries worldwide to estimate crop evapotranspiration (ET) at field scales and over 

large areas. The model has been used in different vegetation and crop types such as wheat, corn, 

soybean, and alfalfa with good results (3 - 20% error) and also in recent years over sparse woody 

http://cran.nexr.com/web/packages/water/
http://cran.nexr.com/web/packages/water/
https://github.com/midraed/water
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canopies such as vineyards and olive orchards, in both plain and mountainous terrain. Thus, ET 

is estimated as a residual of the surface energy equation: 

LE = Rn – G – H 

where LE is latent energy consumed by ET; Rn is net radiation; G is sensible heat flux 

conducted into the ground; and H is sensible heat flux convected to the air. 

Rn, G , and H are estimated for each pixel into a Landsat satellite scene, supported by 

one weather station. Then LE is estimated by fluxes using the previous equation, and after that, 

the instantaneous evapotranspiration values are as: 

 



LE
ETinst = 3600  

where ETinst is the instantaneous ET at the satellite flyby; 3600 is the converting factor from 

seconds to hours; ρw is the density of water = 1000 kg⋅m−3; and λ is the water latent heat of 

vaporization. 

Finally, the daily ET is computed pixel by pixel (30 x 30 m) as: 

24_24 r

r

inst ET
ET

ET
ET =  

First, the WATER package must be loaded to begin this procedure: 

library(water) 

 

Base data preparation 

The water package and a simple procedure were used to calculate crop 

Evapotranspiration based on the METRIC approach. Three sources are as follows: 

• A raw Landsat 7/8 satellite image (original .TIF data from USGS). 

• A Weather Station data (.CSV file). 

• A polygon with our Area-of-interest (AOI) Spatial-Polygon object (if we won`t 

estimate corp ET for the entire Landsat scene). 

In this example, the ET will be calculated for the selected area located in North Serbia, 

near one of the main meteorological stations in this region, weather station Rimski Sancevi, and 

the Landsat 8 satellite images for July 11, 2023, will be used. 
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As a first step, the AOI polygon should be created by using bottom right and top left 

points: 

aoi <- createAoi(topleft = c(404741, 5048480),  

                 bottomright = c( 426281, 5030240), EPSG = 32634) 

 

Then the working directory where files should be located is set: 

 

setwd("D:/data") 

 

Then, the weather station data should be loaded. For that, we are going to use the 

function called read.WSdata. This function converts the .csv file into a waterWeatherStation 

object. Then, if we provide a Landsat metadata file (.MTL file), we can calculate the time-

specific weather conditions at the time of satellite overpass. 

 

csvfile <- "RimskiSancevi.csv" 

MTLfile <- "L8.MTL.txt" 

WeatherStation <- read.WSdata(WSdata = csvfile,  

                        datetime.format =  "%Y/%m/%d %H:%M",    

                             columns=c("date" = 1, "time" = 1,  

                             "radiation" = 5, "wind" = 6, "RH" = 3,   

                             "temp" = 2, "rain" = 4), lat=45.50,  

                             long= 19.91, elev=78, height= 2.0,  

                             tz="Europe/Belgrade",  MTL = MTLfile) 

 

We can visualize the weather station data as (Figure 6.2): 

 

plot(WeatherStation, alldata=FALSE) 
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Figure 6.2 Graph of the weather station data 

 

To be able to run METRIC with Landsat 8 data, the ESPA surface reflectance products 

must be available in the working directory. The Landsat scene can loaded using loadImage() 

function. And the SR data with loadImage.SR: 

 

image.DN <- loadImage(path=getwd(), aoi=aoi, sat="L8") 

image.SR <- loadImageSR(path=getwd(), aoi=aoi) 

 

The satellite images can be visualized as (Figure 6.3 and 6.4): 

 

plot(image.DN) 

 

 

 

Figure 6.3 Landsat 8 images  
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plot(image.SR) 

 

 

 

Figure 6.4 Landsat 8 images (Surface Reflectance) 

 

Surface Energy Balance estimation 

We are going to use the function called METRIC.EB will estimate the land surface energy 

balance. This function has many parameters to choose from the different METRIC model 

equations. e.g., you can change: 

• Coefficients used to estimate broadband albedo. 

• Model to estimate Leaf Area Index (LAI) from satellite data. 

• Model to estimate momentum roughness length (Zom) 

• Automatic method to select anchor pixels 

• ETr coefficient and momentum roughness length for the weather station 

When we run METRIC.EB, the energy balance, and the surface temperature (Ts) are 

assigned to the Energy Balance object. Also, the function prints the position and some other 

data from the anchor pixels (Figure 6.5) and finally plots the values of the aerodynamic 

resistance during the iterative process. 

Energy.Balance <- METRIC.EB(image.DN = image.DN, image.SR = image.SR, 

                            plain=TRUE, aoi=aoi, n = 5,  

                            WeatherStation = WeatherStation, 

                            anchors.method = "best",  
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                            ETp.coef = 1.2, sat="L8",  

                            alb.coeff = "Olmedo", LST.method = "SW",  

                            LAI.method = "metric2010", Z.om.ws = 0.03, 

                            MTL = MTLfile) 

 

 

Figure 6.5 LAI and hot and cold pixels (iterative process) 

 

Then the energy balance components can be visualized as (Figure 6.6): 

 

plot(Energy.Balance$EB) 

 

 

Figure 6.6 Components of the energy balance 
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Daily Crop Evapotranspiration (ET_24) estimation 

To estimate the daily crop evapotranspiration from the Landsat scene, we need the daily 

reference ET (ETr) for our weather station so that we can calculate the daily ETr with: 

 

ET_WS <- dailyET(WeatherStation = WeatherStation, MTL = MTLfile) 

 

And finally, we can estimate daily crop ET pixel by pixel (Figure 6.7): 

 

ET.24 <- ET24h(Rn=Energy.Balance$EB$NetRadiation, 

               G=Energy.Balance$EB$SoilHeat,  

               H=Energy.Balance$EB$SensibleHeat,  

               Ts=Energy.Balance$EB$surfaceTemperature,  

               WeatherStation = WeatherStation, ETr.daily=ET_WS) 

 

Figure 6.7 Daily crop evapotranspiration (mm/day) 

 

The final result can be exported as a TIFF file and opened in GIS software for further 

analysis (Figure 6.8): 

 

writeRaster(ET.24, filename="ET.tif", format="GTiff", overwrite=TRUE) 
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Figure 6.8 Map of the daily crop evapotranspiration in GIS software 
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7. Unmanned Aerial Vehicle (UAV) Systems for Irrigation Management   

 

Dr. Emre Tunca   Dr. Eyüp Selim Köksal 

 

Integrating Unmanned Aerial Vehicles (UAVs) into irrigation management represents a 

substantial advancement in agricultural technology, offering promising solutions to optimize 

irrigation water management in farming. This part explores the current state and future potential 

of UAV systems in irrigation management, focusing on applying Evapotranspiration (ET) 

estimation models and their implications for sustainable agriculture. 

UAVs have increasingly become a tool of choice for precision irrigation management, 

providing high-resolution data vital for efficient water resource allocation. This precision is 

crucial in global water scarcity and the increasing need for sustainable agricultural practices. 

Research by Tunca (2023) and Cheng et al. (2022) highlights how UAVs, equipped with 

multispectral and thermal sensors, can effectively monitor crop water stress and soil moisture 

levels, providing essential data for irrigation scheduling. 

A combination of UAVs and ET estimation models has revolutionized irrigation practices. 

ET estimation models, such as the Modified Penman-Monteith method, FAO-56, and others, 

have been traditionally used for irrigation planning (Zhang et al., 2023). However, their 

integration with UAV technology, as explored in studies by Shao et al. (2023) and, allows for a 

more localized and accurate estimation of crop water requirements. When combined with UAV-

derived data, these models can significantly enhance the precision of irrigation scheduling, 

leading to more efficient water use and reduced waste. 

Despite these advantages, the application of UAVs in irrigation management is 

challenging. One major limitation, as identified by Gao et al. (2021), is the need for advanced 

data processing capabilities to handle the large volumes of data generated by UAVs. Surface 

energy balance models, both single-source (e.g., METRIC, SEBAL, SSEBop) and two-source 

(e.g., TSEB, ALEXI, DTD) models, have been used for ET estimation (Taheri et al. 2022). Two-

source models have generally shown higher accuracy in complex climatic conditions and 

varying vegetation levels (Li et al. 2021). TSEB, for instance, has been effectively applied in 



   
 

71 
 

various crops (Gao et al., 2023; Nassar et al., 2022; Sánchez et al., 2014; Song et al., 2016; 

Tunca et al., 2022).  

Moreover, Nassar et al. (2022) highlight the challenges in integrating UAV data with 

traditional ET estimation models, which require calibration and validation for specific crops 

and regions. Additionally, the cost of UAV systems and their operational complexities, as 

discussed by Mohsan et al. (2022), can be prohibitive for small-scale farmers. 

Looking towards the future, the potential of UAVs in irrigation management is vast. Feng 

et al. (2023) suggest that continued advancements in UAV technology and more sophisticated 

data analytics will enable even more precise and automated irrigation systems. This could lead 

to a paradigm shift in water resource management in agriculture, as Gao et al. (2023) 

envisioned, where UAVs play a central role in achieving sustainable and efficient use of water 

resources. 

In conclusion, UAV systems present a significant opportunity to enhance irrigation 

management in agriculture. Integrating UAV-derived data with ET estimation models offers a 

path toward more precise and efficient water use. While challenges remain, particularly in data 

management and model integration, the future of UAVs in irrigation management is promising. 

As technology continues to evolve, it holds the potential to revolutionize how water resources 

are managed in agriculture, paving the way for more sustainable farming practices. 
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