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Abstract
Evapotranspiration (ET) is a vital process involving the transfer of water from the Earth's surface to the atmosphere through 
soil evaporation and plant transpiration. Accurate estimation of ET is important for a variety of applications, including irriga-
tion management and water resource planning. The two-source energy balance (TSEB) model is a commonly used method 
for estimating ET using remotely sensed data. This study used the TSEB model and high-resolution unmanned aerial vehicle 
(UAV) imagery to estimate sorghum ET under four different irrigation regimes over two growing seasons in 2020 and 2021. 
The study also validated net radiation (Rn) flux through hand-held radiometer measurements and compared the estimated ET 
with a soil water balance model. The study outcomes revealed that that the TSEB model capably estimated Rn values, aligning 
well with ground-based Rn measurements for all irrigation treatments (RMSE = 32.9–39.8 W m−2 and MAE = 28.1–35.2 
W m−2). However, the TSEB model demonstrated robust performance in estimating ET for fully irrigated conditions (S1), 
while its performance diminished with increasing water stress (S2, S3, and S4). The R2, RMSE, and MAE values range from 
0.64 to 0.06, 10.94 to 17.04 mm, and 7.09 to 11.43 mm, respectively, across the four irrigation treatments over a 10-day 
span. These findings not only suggest the potential of UAVs for ET mapping at high-resolution over large areas under vari-
ous water stress conditions, but also highlight the need for further research on ET estimation under water stress conditions.

Introduction

Agriculture, the world’s primary food source (Küçüktopcu 
et al. 2022), has been facing numerous challenges due to 
prolonged drought conditions caused by climate change. The 
unstable pattern of rainfall coupled with high air tempera-
tures requires precise information on crop evapotranspiration 
(ET) for effective irrigation scheduling, water conservation, 
and crop yield optimization (Zou et al. 2021). The agricul-
tural industry consumes approximately 70% of the global 
freshwater supply (Phasinam et al. 2022), making it crucial 
to enhance water productivity to mitigate the impacts of cli-
mate change (Aguirre-García et al. 2021). Efficient water 
management strategies in agriculture, such as crop stress 
monitoring, can contribute to water conservation and cost 
reduction, including electricity expenses for water pump-
ing (Togneri et al. 2019; Cáceres et al. 2021; Abioye et al. 
2022). To achieve these objectives, reliable ET information 

is required at both spatial and temporal scales (Deus et al. 
2013).

Traditionally, crop ET has been estimated using micro-
meteorological methods such as Eddy Covariance (Nas-
sar et al. 2022), Scintillometer (Moorhead et al. 2017), or 
Bowen Ratio (Todd et al. 2000), as well as soil water balance 
approaches using lysimeters (Asadi and Kamran 2022), or 
changes in soil moisture content measured gravimetrically 
(Cemek et al. 2020) or with neutron probes (Koksal et al. 
2017). However, these techniques offer limited spatial and 
temporal coverage and may not provide accurate ET esti-
mates at the field scale (Singh Ramesh et al. 2008; Teix-
eira et al. 2009; Liaqat and Choi 2015). Moreover, direct 
measurement of ET over large areas is challenging. With 
the advent of remote sensing technology, several models 
have been proposed to estimate ET in various agricultural 
contexts, including horticulture (Tunca et al. 2022), field 
crops (Mokhtari et al. 2019; French et al. 2020), orchards 
(Nassar et al. 2021), and agro-ecological zones (Carpintero 
et al. 2020).

Remote sensing-based ET estimation methods can 
be broadly classified into three categories: (I) empirical 
models, which are derived from direct observations and 
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measurements and often involve statistical relationships 
between observed ET and other measurable variables such 
as vegetation indices, meteorological data, or soil moisture 
content, (II) the relationship between remotely sensed sur-
face temperatures and vegetation indices, and (III) surface 
energy balance models (Li et al. 2017; Knipper et al. 2019; 
Khosa et al. 2019). Empirical models depend on the quality 
of training data and may not be suitable for scaling to other 
regions (Li et al. 2021). The relationship between surface 
temperature and vegetation indices is based on the selection 
of dry and wet conditions in the regional ET, but it may 
be challenging to identify theoretical wet conditions in arid 
or semi-arid regions, which can impact the accuracy of ET 
estimates (Tang et al. 2010; Vinukollu et al. 2011). Surface 
energy balance models simulate the physical process of ET, 
with the latent heat flux (LE) calculated as a residual of the 
surface energy balance equation (Feng et al. 2020). Surface 
energy balance models, specifically two-source models, have 
demonstrated superior accuracy in estimating ET compared 
to alternative approaches. However, it is essential to note that 
the level of accuracy may differ across various SEBs. Hence, 
specific SEB models with lower precision may produce com-
paratively less accurate results than specific empirical mod-
els (Li et al. 2021).

Surface energy balance models can be divided into two 
categories: (1) one-source and (2) two-source models. One-
source models evaluate the energy budget of soil and vegeta-
tion as a single component. In contrast, two-source models 
evaluate the energy budget of soil and vegetation separately 
(Taheri et al. 2022). Examples of one-source models include 
Mapping Evapotranspiration at High Resolution with Inter-
nalized Calibration (METRIC) (Allen et al. 2007), Surface 
Energy Balance Algorithm for Land (SEBAL) (Bastiaans-
sen et al. 1998), and Operational Simplified Surface Energy 
Balance (SSEBop) (Senay et al. 2007, 2013). Examples of 
two-source models include the Two Source Energy Balance 
(TSEB) (Norman et al. 1995), Atmosphere–Land Exchange 
Inverse model (ALEXI) (Mecikalski et al. 1999), and Dual 
Temperature Difference (DTD) (Norman et al. 2000). Two-
source models provide a more physically accurate descrip-
tion of water and energy fluxes than one-source models 
(Burchard-Levine et al. 2021). They are, therefore, consid-
ered one of the most accurate techniques for estimating ET 
from remote sensing data (Li et al. 2021). In a study compar-
ing the performance of METRIC, TSEB, and the Trapezoid 
Interpolation Model (TIM) during the Soil Moisture Atmos-
phere Coupling Experiment (SMACEX), Choi et al. (2009) 
found that TSEB outperformed TIM and METRIC. Previ-
ous research has also demonstrated a strong and consistent 

Fig. 1   Site overview of the study area
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relationship between measured and estimated ET using 
TSEB models in a variety of crops, including cotton (Kus-
tas and Norman 1999; Song et al. 2016), bell pepper (Tunca 
et al. 2022), vineyard (Gao et al. 2021), natural ecosystem 
(Nassar et al. 2022), wheat (Sánchez et al. 2015), sunflower 
(Sánchez et al. 2014) and maize (Sánchez et al. 2008). How-
ever, much of the literature on ET estimation using the TSEB 
model has focused on specific seasons or dates during the 
crop growing period and has primarily been conducted for 
fully irrigated crops, leaving the impact of time series data 
and multiple water stress conditions on ET estimation using 
the TSEB model largely unexplored.

This study aimed to evaluate the performance of the 
TSEB model in estimating ET using a time series of mul-
tispectral and thermal UAV images of a sorghum field irri-
gated under different water regimes during the 2020 and 
2021 growing seasons. The net radiation (Rn) fluxes mod-
eled using the TSEB model were validated using ground 
measurements, and the estimated ET products produced by 
the TSEB model were compared to those obtained using a 
soil–water balance approach.

Materials and methods

Study area

The experiment was conducted over two sorghum crop-
ping years, 2020 and 2021, in a 0.1 ha research field located 
in Samsun, Turkey (41° 36′ 10.81″ N, 33° 55′ 13.57″ E, 
16 m above sea level) (Fig. 1). The region is characterized 
by a sub-humid climate. A nearby meteorological station 
of the Turkish State Meteorological Service in Bafra/Sam-
sun, situated approximately 150 m from the study area (41° 
36′ 10.90″ N, 35° 55′ 13.56″ E and 16 m above sea level), 
recorded average annual daily air temperature of 14.6 °C 
and total precipitation of 717.9 mm per year from 1991 to 
2020. The precipitation was distributed as follows: 29.43% 
in winter, 24.01% in spring, 16.49% in summer and 30.06% 
in autumn. The station is equipped with standard meteoro-
logical instruments that are regularly maintained and cali-
brated. The soil profile of the study area is predominantly 
clayey texture in the 0–90 cm layer, with 36% silt and 45% 
clay. From 90 to 120 cm, the soil profile displayed a texture 
characterized as clayey loam, consisting of 33% silt and 36% 
clay constituents (Köksal et al. 2011).

Field experimental design

The experiment utilized a drip irrigation system, compris-
ing a control unit with a water pump, a fertilizer tank, and 
three filters: a vortex separator, a sand-media filter, and a 
screen filter. These filters were selected in accordance with 

the water quality and the requirements of the emitters. A 
dedicated valve and pressure meter controlled the irriga-
tion provided to each experimental plot. Each crop row was 
irrigated using a single drip line, with drippers placed at 
30 cm intervals and delivering a flow rate of 2 L per hour. 
The system maintained a pressure of 1.0 bar throughout the 
experiment. Prior to the experiment, a field test was con-
ducted to collect data on system discharge, the wetting area 
diameter from the drippers, and the irrigation depth. This 
data was then used to determination of the irrigation dura-
tion for each experimental plot. Further details can be found 
in Köksal et al. (2017). The sorghum experiment followed 
a randomized block design with four irrigation treatments 
(0% (S4), 40% (S3), 70% (S2), and 100% (S1) of full irriga-
tion) and three replications. S1 represented the full amount 
of irrigation required to satisfy the water needs of the sor-
ghum crops throughout the growing season. Irrigation was 
applied when the soil moisture level decreased to 40% of 
the available soil water content and was replenished to field 
capacity, with 16 applications in 2020 and 10 in 2021. In 
contrast, rain-fed plots received irrigation only during the 
initial period (13 mm in 2020 and 25 mm in 2021), with 
no additional irrigation in either year. Soil water content 
was monitored using a neutron moisture meter (Model 503 
DR, Campbell Pacific Nuclear, Martinez, CA). This device 
measured soil moisture at 30 cm intervals, down to a depth 
of 120 cm. In the center of each plot, a pair of access tubes 
were installed. One was placed approximately 10 cm away 
from the crop rows to effectively monitor the soil moisture 
variation within the crop root zone region. The second one 
was positioned between the crop row. The neutron moisture 
meter was calibrated at the beginning of the experiment, 
following the procedure outlined by Köksal et al. (2011). 
The irrigation was scheduled based on these soil water 
measurements.

The experimental plots were designed with dimensions 
of 10 m in length and 6.3 m in width, with 2.1 m alleys 
separating them. The sorghum variety “Öğretmenoğlu” was 
selected due to its widespread use in the region. The seeds 
were sown on May 15, 2020, and May 20, 2021, arranged 
in rows with a spacing of 0.7 m between rows and 0.05 m 
between plants. Based on the soil analysis results, fertiliz-
ers were applied at the rates of 64 kg ha−1 of N, 192 kg ha−1 
of P2O5, and 64 kg ha−1 of K2O. The sorghum grains were 
harvested on September 23, 2020, and September 27, 2021. 
The experiment followed standard cultivation practices for 
the region to minimize the influence of pests and diseases 
on crop performance.

Measuring of sorghum evapotranspiration

This study utilized the soil water balance method as the pri-
mary approach to validate the estimated ET for each plot. 
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The soil water content was monitored using a neutron probe 
prior to each irrigation event and on selected dates between 
irrigations. In situ, sorghum ET values were calculated for 
each treatment to maintain soil moisture levels between field 
capacity and readily available water (Eq. 1)

where I represents the amount of irrigation in mm; P is the 
precipitation in mm; RO is runoff (mm) which was ignored 
due to flat plot area and dense planting; DP is the deep per-
colation (mm) which was assumed to be zero due to con-
trolled irrigation; CR is the capillary rise in mm; ΔSW is 
the changing soil water storage in mm.

Reference evapotranspiration (ETo) was calculated using 
the FAO Penman–Monteith equation to represent the atmos-
phere’s evaporation demand (Eq. 2):

where Rn is the net radiation (MJ m−2 day−1); G is soil heat 
flux (MJ m−2 day−1); T is mean air temperature (daily) at 
2 m height (oC); U2 is the wind speed at 2 m height (m s−1); 
ea and es are actual and saturated vapor pressure (kPa); Δ is 
the slope of the vapor pressure curve (kPa oC−1), and γ is the 
psychrometric constant (kPa °C−1).

Remote sensing and image processing

High-resolution multispectral and thermal images were cap-
tured using the DJI Matrice 300 RTK unmanned aerial vehi-
cle (UAV) system (DJI Technology Co., China), equipped 
with a Micasense Altum sensor (Micasense, Seattle, Wash-
ington). The Altum camera features five high-resolution 
multispectral bands (blue, green, red, red edge, and near-
infrared) in the VIS–NIR spectral range at 475, 560, 668, 
717, and 840 nm, respectively, along with a longwave ther-
mal sensor. The Altum sensor includes a Downward Light 
Sensor (DLS2) for calibrating multispectral images under 

(1)ET = I + P − RO − DP + CR ± ΔSF ± ΔSW

(2)ETo =
0.408Δ

(
Rn − G

)
+ �

900

T+273
U2(es − ea)

Δ + �(1 + 0.34U2)

various lighting conditions. The thermal sensor recalibrated 
itself every 5 min or following a 2 K temperature change. 
Each UAV flight followed a predefined flight plan, con-
trolled automatically using DJI Pilot software. The UAV was 
flown at an altitude of 40 m above the ground to capture 
images with over 85% forward and side overlap. Each flight 
resulted in approximately 360 images, each with a footprint 
of 35 m × 26 m and a spatial resolution of 1.7 cm.

During the sorghum growing period, 37 UAV flights were 
conducted in 2020 and 31 flights in 2021, with the dates of 
the UAV image acquisitions shown in Fig. 2. All UAV flight 
missions were carried out under cloud-free conditions to 
prevent errors caused by clouds.

The high-resolution UAV images were captured between 
12:30 PM and 1:30 PM local time. Before and after each 
UAV flight mission, images of the calibration panel were 
taken to convert the raw multispectral images into reflec-
tance images.

The calibration of the multispectral images began with 
the conversion of raw pixel values from the calibration panel 
image into radiance units. Subsequently, the mean radiance 
value was computed for the pixels located within the reflec-
tance panel area of the image. The transfer function, which 
converts radiance into reflectance for each spectral band, was 
then determined based on Eq. 3.

Fi denotes the reflectance calibration factor, �i signifies 
the reflectance value provided by the manufacturer, Li repre-
sents the radiance for the reflectance panel pixels for band i.

The radiance, L, is calculated using the equation Eq. 4.

where p is the normalized raw pixel value, pBL is the nor-
malized black level value, a1 , a2 and a3 are the radiometric 
calibration coefficients, V(x, y) is the vignette polynomial 
function for pixel location (x, y), te is the image exposure 
time, and g is the sensor gain setting.

Subsequently, a vignette correction is executed to rectify 
the decrease in light sensitivity in pixels further from the 
image center. This is achieved using a 3-degree bivariate 
polynomial as per Eq. 5.

To compensate for vignetting in the image, each pixel 
value is divided by the corresponding vignetting factor, as 
per the equation:

(3)Fi =
�i

avg(Li)

(4)L = V(x, y) ×
a1

g
×

p − pBL

te + a2y − a3tey

(5)V(x, y) = exp
(
sumijcijx

iyj
)
.

Fig. 2   Dates of UAS image acquisition
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The variables x and y are calculated as:

where i and j are column and row pixel coordinates, w 
and h are image width and height in pixels, Iij is the pixel 
intensity in the original image with vignetting, and I′ij is the 
pixel intensity in the corrected image without vignetting. 
All the procedures above were conducted utilizing Agisoft 
Metashape, a photogrammetric processing software devel-
oped by Agisoft LLC, based in St Petersburg, Russia.

Sorghum canopy temperatures were measured using a 
handheld thermal imager (Testo, 875i) to facilitate compari-
son and calibration of the Micasense Altum’s thermal band. 
The handheld thermal imager has a high-quality 32° × 23° 
lens and measurement accuracy of ± 2 °C.

The empirical line method, which is based on the linear 
relationship between the at-sensor radiometric temperature 
and corresponding surface temperature, was used to calibrate 
the Micasense Altum thermal band. The sensor’s response 
range spans from 8 to 14 μm. Temperature measurements 
were conducted at solar noon under clear-sky conditions. 
The measurements were taken in four cardinal directions, 
namely east, west, north, and south, with three replications 
each and at an approximate height of 1 m above the canopy. 
The canopy temperatures for the plot were then calculated 
by averaging all the measurements.

Five different ground control points (GCPs) were posi-
tioned around the experimental plots and remained fixed 
throughout the sorghum growing period. Their locations 
were recorded with a hand-held GPS device (Geo7x, Trim-
ble GeoExplorer, USA). These GCPs were utilized for geo-
metric correction and aligning images acquired at different 
dates.

Rn is the primary driving force for the surface energy 
balance process and must be accurately estimated to obtain 
precise LE values, which are calculated as a residual of the 
surface energy balance equation.

To assess the accuracy of Rn estimates using the TSEB 
model, the estimated Rn values were compared with meas-
urements taken using a CNR2 net radiometer (Kipp and 
Zonen, Delf, The Netherlands). Rn values for each experi-
mental plot were measured 1 m above the crop canopy, con-
sidering the crops' growth. Rn was measured on four plants 
per plot, and the measurements were averaged to a single Rn 
value to represent the status of the experimental plot.

(6)I�ij =
Iij

exp(sumijcijx
iyj)

(7)x = 2 ×
i + 0.5

w − 1

(8)y = 2 ×
j + 0.5

h − 1

Determination of leaf area index

On the same day as the high-resolution UAV images acquisi-
tion, the in-situ leaf area index (LAI) was measured using a 
destructive method. For these measurements, three sorghum 
plants in each experimental plot were sampled at each sam-
pling location. The leaves were detached, affixed to a sheet 
of white paper, and then scanned and scaled. The total area 
of the sorghum leaves was calculated to determine the LAI 
using Eq. 9. The average of the measurement results was 
taken as the LAI value for the experimental plot.

The LAI maps, which were used as input data for the 
TSEB model, were generated from an empirical regression 
of the multiplication of the Normalized Difference Vegeta-
tion Index (NDVI) and crop height ( HC ) (NDVI x HC ) with 
the measured LAI obtained through a destructive in-situ 
method.

TSEB model

The two-source energy balance Model (TSEB) was initially 
developed by Norman et al. (1995) to separate turbulent fluxes 
between soil and canopy layers, thereby independently estimat-
ing evaporation and transpiration. The TSEB model was then 
updated by Kustas and Norman (1999) through improvements 
to the equations for soil surface resistance and partitioning of 
net radiation between the canopy and soil. A comprehensive 
explanation of the TSEB has been published by Norman et al. 
(1995), Guzinski et al. (2014) and Tunca et al. (2022), and 
here we provide a brief summary. In this study, the TSEB-PT 
version was used to estimate sorghum ET.

The TSEB-PT model assumes that the contribution of 
soil and vegetation to surface temperature can be separated 
based on canopy fractional cover ( FC ). The model requires 
inputs such as HC , LAI, radiometric surface temperature 
( Ts ), FC , and the ratio of canopy width to crop height ( WC 
HC

−1). Additionally, the model requires meteorological data 
at the time of the UAV flight, including solar radiation (W 
m−2), air temperature (K), vapor pressure (mBa), and wind 
speed (m s−1).

In the TSEB model, net radiation Rn is partitioned into 
soil and vegetation sources using the following equations:

(9)LAI =
Sorghum leaf area

Row spacing × crop distance

(10)Rn = Rns + Rnc

(11)Rns = Hs + LEs + G

(12)Rnc = Hc + LEc
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where Rn is the total net radiation (W m−2); Rns and Rnc are 
net radiation flux of soil and canopy, respectively (W m−2).

G is estimated as a function of Rns and is assumed to be 
35% of Rns (Norman et al. 1995).

Sensible heat flux and sensible heat flux of soil (Hs) and 
canopy (Hc) are estimated as:

where � is the air density (kg cm−3); Cp is the heat capacity 
of the air (J Kg−1 K−1) Ts , is soil temperature; Tc is canopy 
temperature; TAC is the air temperature within the canopy 
boundary layer (K); TA is the air temperature (K); rA is the 
aerodynamic resistance (s m−1); rx is the resistance near the 
canopy layer (s m−1) and rs is the resistance above the soil 
surface layer (s m−1). rx and rs calculations can be found 
in Norman et al. (1995). rA can be calculated using solar 
radiation, air temperature, and wind speed. The formulations 
of Rns and Rnc were given in Kustas and Norman (1999). 
LEc was estimated by Priestley-Taylor method, as given in 
Eq. 18, while LEs is considered as the residual of the energy 
balance equation.

In Eq. 18, �PT is the Priestley–Taylor coefficient. Accord-
ing to Norman et al. (1995), the initial value of �PT is set to 
1.26. Fc was calculated by the proportion of sorghum crops 
and bare soil within each spatial domain based on a binary 
classification of the high-resolution NDVI images. This 
study used the pyTSEB package (https://​github.​com/​hecto​
rnieto/​pyTSEB) to implement the TSEB-PT model. Standard 
input values (spectral properties, surface properties, resist-
ance terms, etc.) were utilized provided by the PyTSEB.

The solar radiation method was used to extrapolate 
instantaneous LE to daily ET. This technique was estab-
lished by Jackson et  al. (1983) and assumes that ET is 
strongly correlated with Rs. Several studies, including 
Wandera et al. (2017), Tunca et al. (2022) and Nassar et al. 
(2021) have reported that the extrapolation of the incoming 

(13)G = cG × Rns

(14)Hs = �Cp

Ts − TAC

rs

(15)HC = �Cp

TC − TAC

rx

(16)H = �Cp

TAC − TA

rA

(17)LE = LEc + LEs

(18)LEc = �PTFc

Δ

Δ + �
Rnc

solar radiation has been relatively effective when applied to 
crops for estimating daily ET (Eq. 19).

In this equation, ETd represents the total daily ET (mm 
day−1), LE stands for the latent heat flux (W m−2), Rs refers 
to the instantaneous incoming solar radiation (W m−2), and 
Rs24

 denotes the daily incoming solar radiation (MJ/m2/day). 
The symbol �w is used to symbolize the density of water (kg 
m−3), while λ is the latent heat of vaporization for water (MJ 
kg−1). The numeral c represents the value of 1000, which is 
used to convert measurements from meters to millimeters.

The estimated ET values were interpolated between two 
consecutive UAV flight dates to derive daily ET values. This 
process began by dividing the estimated daily ET by the ETo 
for each flight date. These values were linearly interpolated 
for each day that fell between two consecutive UAV mis-
sions. Finally, the interpolated values were multiplied by the 
ETo of the corresponding day. This comprehensive process 
yielded a unique set of estimated daily ET values, providing 
a detailed understanding of ET throughout the study period.

Statistical analysis

The coefficient of determination (R2), root mean square error 
(RMSE), and mean absolute error (MAE) were calculated to 
determine the robustness and precision of the TSEB model 
to estimate daily and seasonal ET. A higher R2 value shows 
a better model fit, while a smaller RMSE and MAE value 
shows more accurate estimates (Eqs. 20–22).

where Mi is the measured value, Ei is the estimated value; M
1
 

is the average of measured values and n indicates the number 
of measurements.

(19)ETd =

(
LE

Rs

)

(
c

�w�
)Rs24

(20)R2 = 1 −

∑n

i=1
(Mi − Ei)

2

∑n

i=1
(Mi −M

1
)2

(21)RMSE =

�
∑n

i=1
(Mi − Ei)

2

n

(22)MAE =
1

n

n∑

i=1

|
|Mi − Ei

|
|

https://github.com/hectornieto/pyTSEB
https://github.com/hectornieto/pyTSEB
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Results and discussion

Meteorology

Table 1 presents the meteorological parameters for each 
month of the two consecutive sorghum growing seasons. 
The region’s long-term average total rainfall over the past 
30 years (1991–2020) from May to October is 220.8 mm. 
This is 94.2 mm more than the rainfall recorded during the 
2020 sorghum growing period and 67.8 mm less than the 
2021 season. The total rainfall for the two growing seasons 
of sorghum was 126.6 mm and 288.6 mm, respectively. 
The significant rainfall variation between the two years can 
be attributed to extreme precipitation events, specifically 
those that occurred from September 15 to September 26, 
2021, which totaled 106.9 mm and significantly influenced 
the observed difference. The average daily air temperature 
ranged between 16.2 and 24.9 ºC during the study period. 
Meanwhile, the monthly average wind speed varied from 
1.89 to 2.65 m s−1. Additionally, solar radiation values were 
observed to fluctuate between 14.9 to 27.2 MJ m−2d−1.

The two growing seasons aligned with the long-term 
average meteorological data, with the exception of rainfall. 
The climatic conditions remained consistent throughout the 
two-year experiment, facilitating the evaluation of sorghum 
ET under various irrigation treatments while keeping agro-
nomic and meteorological conditions stable.

Sorghum evapotranspiration

Figure 3 presents the ET values for each irrigation treatment 
across two sorghum growing seasons. To ensure uniform 
germination, a total of 13 and 25 mm of irrigation water 
were applied equally to all experimental treatments at the 

start of the growing seasons in 2020 and 2021, respectively. 
In both experimental years, treatment irrigation was initi-
ated on June 15, 2020, and June 12, 2021, respectively, and 
terminated on September 25, 2020, and September 22, 2021. 
The total amount of irrigation applied across the range of 
treatments ranged from 13.0 to 701.4 mm in 2020 and 25.0 
to 423.0 mm in 2021. Notably, the climatic conditions, as 
reflected by the seasonal ETo, differed in the two years, with 
values of 668.78 mm in 2020 and 608 mm in 2021. As the 
crops matured and the evaporative demand increased, the ET 
increased rapidly. The highest ET values were observed from 
early July to mid-August, which coincided with the maxi-
mum ground cover values (Fig. 4) and decreased towards 
the end of the growing season as the evaporative demand 
diminished.

During the sorghum growing period, the highest ET val-
ues were observed in the S1 treatment. As expected, the 
daily ET values were lower in the S4 treatment over both 
years. The seasonal sorghum ET values increased with the 
increasing amount of irrigation water. The seasonal ET val-
ues varied from 237.7 to 753.9 mm in the first year and 
239.0–637.6 mm in the second year. The 18.2% higher sea-
sonal ET value in 2020 is likely due to the 10.6% higher 
evaporative demand in that year compared to 2021.

Previous research has also investigated the crop ET rates 
of sorghum. For example, Garofalo and Rinaldi (2013) cal-
culated sorghum ET values using the soil water balance 
method as 702 mm. Sakellariou-Makrantonaki et al. (2007) 
calculated the total water input to the root area as 777 mm. 
Abd El-Mageed et al. (2018) calculated the seasonal sor-
ghum ET as 671 mm for full irrigation (100% FI), 570 mm 
for 85% FI, and 496 mm for 75% FI. The results of this study 
are generally consistent with these previous studies. How-
ever, the crop ET rate of sorghum was reported between 198 

Table 1   2020 and 2021 and 
long-term meteorological data 
for Bafra/Samsun

May June July August September

Air temperature (ºC) 2020 16.2 21.5 24.1 22.6 21.9
2021 17.0 20.2 24.9 23.9 18.5
Long-term 15.1 19.9 22.9 23.6 20.3

Wind speed ( U
2
) 2020 2.58 2.41 2.19 2.37 1.96

2021 2.63 1.89 2.65 2.13 1.95
Long-term 1.26 1.44 1.72 1.71 1.50

Solar radiation (MJ m−2 d−1) 2020 24.3 26.6 26.4 25.6 18.3
2021 24.0 23.7 27.2 21.6 14.9
Long-term 20.1 23.3 23.2 20.5 15.3

Rainfall (mm) 2020 73.9 7.5 8.4 36.4 0.4
2021 67.8 46.0 7.6 59.0 108.2
Long-term 48.8 45.8 35.1 37.5 53.6

ETo (mm) 2020 138.1 161.9 173.2 167.5 117.5
2021 147.0 143.8 186.0 143.4 92.0
Long-term 103.4 129.8 142.7 125.1 82.2
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and 553.6 mm by Aydinşakir et al. (2021), 400–428 mm by 
Lamm et al. (2010) and 240–500 mm by Hao et al. (2014). 
The ET values obtained in this study are slightly higher than 

those in the above literature. This discrepancy could be due 
to variations in climate, soil physical properties, sorghum 
varieties, and irrigation methods.

Fig. 3   Calculated  ET values using the soil water balance method for each irrigation treatment, with reference to evapotranspiration (ETo), 
applied irrigation amounts, and precipitation events throughout the sorghum growing seasons of 2020 and 2021
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Sorghum leaf area index

Figure 5 shows the time series of in situ average LAI val-
ues among the treatments for each measurement date. In 
both experimental years, LAI was measured in 228 sor-
ghum plants (120 in 2020 and 108 in 2021). Maximum LAI 
values were calculated at the mid-growing stage in both 
sorghum growing seasons (2020 and 2021). The S1 treat-
ment demonstrated the highest LAI, with values of 11.0 
and 11.2 measured at 102 and 97 days After Sowing (DAS) 
in 2020 and 2021, respectively. The LAI values obtained 

from this irrigation treatment differed significantly from the 
results obtained from other irrigation treatments (p < 0.05). 
Sorghum LAI values ranged from 0.3 to 11.0 in 2020 and 
1.93–11.2 in 2021. In the first year, measured LAI values 
rose rapidly from DAS 41 to DAS 91, but then, decreased 
slightly from DAS 102 to DAS 132. The LAI values in 2021 
increased rapidly during the development stage (between 
DAS 56 and 77), and the peak LAI (11.2) was reached at 
DAS 97. The LAI values of this study are consistent with 
those reported by Aydinşakir et al. (2021), who concluded 
that maximum LAI values varied between 9.0 and 16.1. In 

Fig. 4   Changes in sorghum fractional vegetation cover for 2020 and 2021

Fig. 5   In situ measured average LAI values for each irrigation treatment in 2020 and 2021
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the experiment of GhassemiSahebi et al. (2020), the seasonal 
average LAI values ranged from 4.43 to 7.38. The maximum 
sorghum LAI value was calculated as 11.0 by Sánchez et al. 
(2011). Following the results of this study, previous studies 
have shown that LAI values decreased after a period of water 
stress. For example, Campi et al. (2016) indicated that LAI 
in fully-irrigated sorghum plants was 35% higher in com-
parison to water-stressed. The same results were found by 
Cosentino et al. (2012) and Aydınşakir et al. (2021).

Figure 6 provides the scatter diagram of the relationship 
between the estimated and measured sorghum LAI. Results 
indicated that estimated LAI had a good consistency with 
the in situ measured LAI, indicating an R2, RMSE and MAE 
of 0.81, 1.17 and 0.81 m−2 m−2, respectively. Estimated 
sorghum LAI values ranged from 1.9 to 10.68  m−2  m−2 
in 2020 and from 2.1 to 10.5 m−2 m−2 in 2021. However, 
one drawback of the empirical models used in this study 
is that they strictly depend on the collection and quality 
of the ground data. Some errors could occur with in situ 
LAI measurements, which could affect the LAI estimation 
(Gano et al. 2021). On the other hand, remote sensing is a 
widely used technique to estimate LAI due to its fast and 
accurate LAI estimation. Previous research has already 
demonstrated the potential of using vegetation indexes cal-
culated from remotely sensed data, such as the NDVI, to 
estimate sorghum LAI (Potgieter et al. 2017; Shafian et al. 
2018). However, a saturation of NDVI at high LAI values 
has been reported by several researchers (Huang et al. 2015; 
Huete et al. 2002; Potgieter et al. 2017; Tunca et al. 2018). 
Also, this problem may partly be explained by Mutanga and 
Skidmore (2004), who concluded that other indices could 
be used rather than NDVI due to saturation after canopy 
closure. In this study, we developed a new approach to esti-
mate sorghum LAI based on NDVI and Hc obtained from 
UAV images. Overall, the results of this study indicated that 
the generated LAI maps reasonably capture both spatial and 
temporal sorghum LAI variability within the study area and 

that these maps are reliable for use in ET mapping with the 
TSEB model.

Comparison of ground and UAV thermal image

Figure 7 compares thermal images captured from a UAV 
system and a hand-held ground thermal imager over two 
consecutive growing seasons. The results demonstrate a 
strong correlation between the temperature values obtained 
from the UAV system and those from the ground-based ther-
mal imager across different irrigation treatments, with the 
scatter points in the graph closely aligned with the 1:1 line.

The most significant discrepancies between the UAV and 
ground-based thermal measurements were approximately 
6 °C for both years. The highest and lowest temperatures 
measured with the UAV system were 46.4 °C (DAS 76) and 
24.7 °C (DAS 28), respectively, while the highest and low-
est temperatures measured with the ground thermal imager 
were 49.4 °C (DAS 76) and 24.2 °C (DAS 28), respectively. 
A significant correlation was observed between the two 
measurements, with a coefficient of determination (R2) of 
0.91 and RMSE and MAE values of 2.01 °C and 1.55 °C, 
respectively, which are consistent with the accuracy of the 
Micasense Altum camera. These findings are similar to 
previous studies (Awais et al. 2022; Malbéteau et al. 2018; 
Simpson et al. 2021; Song and Park 2020; Tunca et al. 
2022). Several factors can influence the accuracy of UAV 
thermal temperatures, such as climatic conditions like wind, 
air temperature, and humidity, and environmental conditions 
like emissivity and the distance between the thermal camera 
and the target (Acorsi et al. 2020). Additionally, factors like 
UAV flight height, camera shooting angle, and vignetting 
can also impact thermal accuracy (Kelly et al. 2019).

Fig. 6   Scatterplot of the sorghum LAI estimated values vs in-situ 
measured values

Fig. 7   Comparison of thermal images taken from UAV system and 
hand-held ground thermal imager
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Fig. 8   Time series of average Rn estimates from the TSEB model against in situ measurements during the two sorghum growing periods
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Net radiation results

Figure 8 presents a time series comparison of average Rn 
estimates from the TSEB model and in situ measurements 
during the two sorghum growing periods. The highest 
recorded Rn values were observed in plots subjected to S1 
irrigation treatments (685.1 W m−2 in 2020 and 728.2 W 
m−2 in 2021), while the lowest Rn value was noted in S4 
irrigation plots (597.8 W m−2 in 2020 and 546.60 W m−2 in 
2021). Similarly, the estimated maximum and minimum Rn 
values were found in S1 (715.9 W m−2 in 2020 and 767.2 
W m−2 in 2021) and S4 (551.0 W m−2 in 2020 and 540.5 W 
m−2 in 2021) treatments, respectively. This could be attrib-
uted to the fact that S1 treatment plots have moist soil while 
S4 treatment plots have a dry soil surface. The differences 
could be related to the higher albedo values of dry soil (S4) 
and its higher surface temperature values, which cause a 

decrease in Rn values for S4 treatment plots. These findings 
are in line with previous research, such as Ben-Asher et al. 
(1978), who demonstrated that soil surfaces with higher 
moisture content exhibited greater Rn values than those 
that were only partially moistened. Furthermore, this study's 
results are consistent with the work of Kalita and Kanwar 
(1992), who found significant variations in the Rn values of 
corn at different soil moisture content levels. Köksal et al. 
(2018) found that Rn values did not differ among irrigation 
treatments. However, larger Rn values were obtained from 
fully irrigated plots..

In general, the estimated Rn values using the TSEB 
model captured well the measured Rn values for all experi-
mental treatments during the two sorghum growing seasons 
(Table 2). These results are in agreement with previous 
research on TSEB-based Rn estimation, where calculated 
RMSE for estimated Rn ranged between 26 and 43 W m−2 

Table 2   Goodness-of-fit statics between the measured net radiation 
(W m−2) and the estimated net radiation (W m−2) using the TSEB 
model at different irrigation treatments

R2 RMSE (W m−2) MAE (W m−2)

S1 0.56 39.6 35.2
S2 0.42 39.7 34.7
S3 0.49 39.8 33.7
S4 0.47 332.9 28.1

Fig. 9   Comparison of estimated sorghum ET by using the TSEB model and measured sorghum ET using the soil water balance approach

Table 3   Statistical analysis results from TSEB-PT model estimations 
ET vs. measured ET using neutron probe for ten days

R2 MAE (mm 10 day−1) RMSE (mm 
10 day−1)

S1 0.64 7.09 10.94
S2 0.30 8.58 12.71
S3 0.09 8.95 14.22
S4 0.06 11.43 17.04
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(Nassar et al. 2021), 30–50.1 W m−2 (Gan and Gao 2015), 
10.90–58.95 W m−2 (Khan et al. 2021), 63 W m−2 with Sen-
tinel 2 + 3 images and 103 W m−2 with Landsat 8 images 
(Jofre-Čekalović et al. 2022), and 44.2 W m−2 (Chávez et al. 
2009). The slight difference between estimated and meas-
ured Rn values can be explained by errors in the estimation 
of Rn caused by TSEB model parameters, as well as dust and 
heating of the downward-facing pyrgeometer of the device. 
Another possible reason for the discrepancies is the differ-
ence in the field of view (FOV) between the net radiometer 
and Micasense Altum. The net radiometer used in this study 
had an FOV of 180° for the upper detector and 150° for the 
lower detector, while the Micasense Altum had an FOV of 
48° × 37°. The wider FOV instrument receives proportion-
ally more radiation from its environment than the narrow 
one (Micasense Altum), resulting in the Micasense Altum 
receiving radiation from a more homogeneous area than the 
hand-held net-radiometer device.

Sorghum TSEB results

Sorghum ET values, calculated using the soil water balance 
method were used as a reference for evaluating the ET output 
from the TSEB model. The estimated ET maps are provided 
as a time series in the Appendix. Since the neutron probe 
measurements were taken with a ten-day interval, the sor-
ghum ET values were reported as mm 10 days−1. However, 
it was not always possible to align UAV image acquisition 
with neutron probe measurements due to adverse weather 
conditions such as cloud cover or strong winds. The results 
of the TSEB-based ET values are not transferred from one 
day to another. Therefore, a fraction of the estimated ET 
(ET/ETo) was used for linear interpolation between sequen-
tial UAV missions to obtain ET values that coincided with 
two consecutive neutron probe measurement periods. While 
the soil water balance method for calculating crop ET is 
not an actual ET measurement method, it remains a popular 
approach for evaluating estimated ET for TSEB, as dem-
onstrated in studies by (Liang et al. 2021; Sau et al. 2004; 
Tunca et al. 2022). Other researchers have used the Eddy 
Covariance system to validate TSEB-based estimated ET 
and surface energy balance components (Hoffmann et al. 
2015; Nassar et al. 2021). However, the EC measurement 
technique was not suitable for our study plots due to their 
small size (6.3 m × 10 m), which is not compatible with the 
footprint of the EC tower.

Figure 9 presents a comparison of measured and estimated 
ET values for 10-day intervals. The corresponding R2, MAE, 
and RMSE values are detailed in Table 3. The range of meas-
ured ET values was between 0.7 to 83.6 mm 10 day−1, while 
the TSEB model estimated ET values between 0.3 and 75.5 mm 
10 day−1. The maximum and minimum measured and estimated 

ET values were observed in S1 and S4 treatments, respectively. 
The MAE and RMSE of measured and estimated ET var-
ied between 7.09 (~ 0.70 mm day−1) and 11.43 mm 10 day−1 
(~ 1.14 mm day−1) and 10.94 (~ 1.09 mm day−1) to 17.04 mm 
10 day−1 (~ 1.7 mm day−1), respectively. Liang et al. (2021) 
assessed the TSEB model’s performance against the ET derived 
from a neutron probe in a fully irrigated dry edible bean field, 
reporting RMSE values ranging from 3.3 to 9.7 mm week−1. 
French et al. (2015) found a difference of 2 mm per day between 
the ET estimated with TSEB and the ET measured from the 
neutron probe. Similar results were reported in studies using the 
TSEB model for sorghum (Sánchez et al. 2011), cotton (Colaizzi 
et al. 2014) and sunflower and canola (Sánchez et al. 2014).

As depicted in Fig. 9, the estimated ET values for the S1 
treatment exhibit a similar variation trend to the measured 
ET values. However, the results for the S4 treatment showed 
poor performance across two years. These discrepancies can 
be attributed to the increase in deficit irrigation from S1 to 
S4, which leads to an increase in water deficit in the root 
zone. The soil moisture deficiency, evident in the neutron 
probe measurements in the S4 treatments, was not accurately 
predicted by the TSEB model. Zhuang and Wu (2015) sug-
gested that the �PT parameter of 1.3 is appropriate for fully 
irrigated crops. However, when this parameter was applied 
to high-resolution UAV images covering unstressed (S1) and 
stressed (S2, S3, and S4) sorghum treatment plots, the TSEB 
model overestimated sorghum ET for stressed treatments. 
Guzinski et al. (2013) pointed out that TSEB is sensitive to 
the parameter and requires manual adjustment under stress 
conditions. However, this approach may be subjective as the 
stress level of vegetation is not always accurately discern-
ible. Recent studies have indicated that the TSEB model can 
overestimate crop ET, particularly under high water stress 
and low vegetation cover conditions (Gonzalez-Dugo et al. 
2009; Long and Singh 2012; Morillas et al. 2014; Bellvert 
et al. 2023). In this study, Rn is generally overestimated by 
TSEB. This overestimation could be attributed to the mete-
orological data used in this study. The overestimation of 
Rn subsequently leads to an overestimation of sorghum ET 
(Chen et al. 2022).

Another source of uncertainty in TSEB-based ET esti-
mation is the presence of shadow pixels. Pixels contain-
ing shadows result in a lower surface temperature, which 
increases the measured ET compared to pixels containing 
only vegetation (Mokhtari et al. 2021).

The sensor used in this study also contributes to the dis-
crepancy between estimated and measured ET values. The 
thermal images obtained through UAVs equipped with ther-
mal cameras exhibit various sources of uncertainty, includ-
ing the internal non-uniformity correction and temperature 
drift, as well as environmental factors such as air humid-
ity and surface emissivity property (Aubrecht et al. 2016; 
Meier et al. 2011; Mesas-Carrascosa et al. 2018; Olbrycht 



	 Irrigation Science

1 3

et al. 2012; Peng et al. 2023). The presence of uncertainties 
directly impacts the quality of the acquired UAV thermal 
images. These uncertainties directly impact the quality of 
the acquired UAV thermal images. Therefore, it is crucial to 
prioritize specific steps, such as updating the camera system 
and conducting radiometric calibration of the thermal data, 
to enhance the accuracy and reliability of the data collection 
process. Overall, while TSEB-based ET estimates can gener-
ally capture variability between the experimental treatments, 
the accuracy diminishes with increasing water stress.

Conclusion

This research utilized the TSEB model in conjunction 
with high-resolution UAV imagery to estimate Rn and ET 
values for sorghum. Estimated values were then compared 
with measured Rn obtained from a net radiometer and 
calculated ET derived from neutron probe measurements 
across two sorghum growing periods. The TSEB model 
yielded satisfactory estimates of Rn for each irrigation 
treatment, although the ET estimation error increased 
with a higher degree of water stress level. The RMSE 
and MAE between estimated and measured sorghum Rn 
ranged between 32.9 to 39.8 W m−2 and 28.1 to 35.2 W 
m−2, respectively. The highest accuracy for sorghum ET 
estimation was obtained from S1 treatments (R2 = 0.64, 
RMSE = 10.94  mm 10  day−1 (~ 1.09  mm  day−1), 
while the lowest accuracy was obtained from S4 
treatments (R2 = 0.06, RMSE = 17.04  mm 10  day−1 
(~ 1.70 mm day−1).

These results suggest that the TSEB model can effec-
tively estimate ET under non-stressed conditions and can 
be employed for full-irrigation scheduling. However, to 
enhance the TSEB model's performance under water stress 
conditions, further research is required. Additionally, test-
ing different TSEB models (TSEB-2T, TSEB-PM, and 
TSEB-DTD) across various crop types is recommended. 
Furthermore, future studies should incorporate different 
sensors to gain a more comprehensive understanding of 
their impact on ET estimation.

Appendix
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