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Abstract This study investigates the effects of dif-
ferent water stress levels on spectral information, 
leaf area index (LAI), and the performance of three 
machine learning (ML) algorithms in estimating crop 
water content (CWC) of sorghum. The results show 
that the spectral reflectance of sorghum varies with 
growth stage and irrigation treatment, but consistent 
patterns are observed for each treatment. The LAI of 
sorghum gradually increased throughout the growth 
stages, with the most significant variation observed 
during the flowering stage. In this study, three 
machine learning-based regression models, namely, 
extreme gradient boosting (XGBoost), random forest 
(RF), and support vector machine (SVM), were uti-
lized to estimate sorghum CWC using hyperspectral 
measurements. Recursive feature elimination (RFE) 
method was used to select the optimal spectral reflec-
tance wavelengths for the ML models, and principal 
component analysis (PCA) was used to reduce the 

dimensionality of the hyperspectral data. The results 
indicated that the RF model achieved the highest 
 R2 (0.90) and lowest of RMSE (56.05) value using 
selected wavelengths, while the XGBoost model 
demonstrated superior accuracy and reliability in esti-
mating CWC using dimensionality-reduced hyper-
spectral data (r = 0.96, RMSE = 45.77). Also, the 
study highlights the importance of vegetation index 
(VI) in CWC estimate. Some VIs, such as NDVI and 
MSAVI, performed poorly, while others, such as CL_
Rededge and EVI, performed better. The study pro-
vides valuable insights into the effects of water stress 
levels on spectral information, LAI, and the perfor-
mance of ML algorithms in estimating the CWC of 
sorghum. The findings have significant implications 
for precision agriculture, as accurate and reliable esti-
mates of CWC can help farmers optimize irrigation 
and fertilizer applications, leading to improved crop 
yields and resource efficiency.

Keywords Crop water content · Hyperspectral · 
ML · LAI · Vegetation indices

Introduction

Sorghum is a cereal crop with various uses in dif-
ferent sectors, such as food, feed, energy, and indus-
try (Wanga et  al., 2022). However, its optimal yield 
depends on how often it rains during its growth 
period, highlighting the importance of effective 
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irrigation management. Crop water content (CWC) 
has a direct effect on the growth, yield, and quality 
of sorghum, as shown by Aydinsakir et  al. (2021) 
and Allamine et al. (2023). CWC can also indirectly 
indicate soil moisture content (Zhang et  al., 2021). 
Hence, CWC determination is vital for assessing crop 
growth and irrigation management in a timely and 
accurate manner.

Previously, trained professionals conducted in-
situ measurements or used conventional methods to 
evaluate CWC (Chivasa et al., 2020). However, utiliz-
ing these techniques requires significant effort, high 
cost and longer time periods, making them imprac-
tical for regular and efficient crop monitoring (Yue 
et  al., 2018). Hyperspectral data have demonstrated 
its effectiveness in monitoring CWC over the decades 
by providing detailed information on crop reflectance 
across various wavelengths. Several studies have 
employed hyperspectral data to enhance the accu-
racy of CWC estimation for different crops and veg-
etation types, such as rice (Elsherbiny et  al., 2021), 
wheat (Shi et al., 2022), maize (Meiyan et al., 2022), 
poplar (Colombo et al., 2008), and natural vegetation 
(Clevers et  al., 2010). Moreover, hyperspectral data 
has also been applied to other aspects of crop man-
agement, such as nutrient concentration (Eshkabilov 
et  al., 2022), soil physical properties (Arslan et  al., 
2014), crop yield (Irik & Kirnak, 2022) and irrigation 
(Köksal, 2011) estimation.

Estimating CWC using hyperspectral data is chal-
lenging due to the complexity of the relationship 
between reflectance and CWC, influenced by vari-
ous factors such as leaf biochemistry, canopy struc-
ture, and soil moisture level, making it difficult to 
directly derive CWC values from hyperspectral meas-
urements. These complexities necessitate a deeper 
exploration of the feasibility and limitations of using 
hyperspectral data for accurate CWC estimation. In 
recent years, machine learning (ML) techniques have 
emerged as promising solutions to overcome these 
challenges and extract valuable information from 
the hyperspectral data. For instance, Jin et al. (2017) 
applied a support vector machine (SVM) model to 
estimate grass CWC and achieved high model accu-
racy  (R2 = 0.98). Sibanda et  al. (2021) used random 
forest (RF) to estimate the grasslands CWC, obtain-
ing an  R2 of 0.98 and an RMSE of 9.8  gm−2. In 

addition to these ML models, partial least squares 
regression (Das et al., 2021), decision trees (Ji et al., 
2014), K-nearest neighbor (Zhang et  al., 2021) and 
artificial neural networks (Elsherbiny et  al., 2021) 
were employed to estimate CWC. The efficacy of 
the model based on hyperspectral data is depends on 
two primary determinants: (I) feature selection and 
(II) model selection (Elsherbiny et al., 2021). Model-
based feature (MF) and principal component analysis 
(PCA) are the commonly employed methods for fea-
ture selection. Among them, MF selection technique 
is characterized by the identification of a feature sub-
set that displays a high level of discriminative power 
and predictive utility (Beltrán et  al., 2005). The MF 
method offers a feasible means of improving model 
performance by eliminating redundant features, pre-
venting over-fitting, and retaining the original feature 
representation, which enhances model interpretability 
(Guyon & Elisseeff, 2003). Some scholars used this 
method to choose optimal spectral bands to estimate 
CWC (Elsherbiny et  al., 2021). In addition to these 
methods, dimension reduction (DR) using PCA is 
another effective method to reduce the dimension 
of hyperspectral reflectance. DR is a technique that 
transforms data into a lower dimensional space while 
eliminating irrelevant variance and detecting impor-
tant features. DR extracts critical low-dimensional 
features (Hasanlou & Samadzadegan, 2012). While 
other feature selection methods have been widely 
used for choosing suitable spectral bands, there is 
little research on using the DR of hyperspectral data 
in combination with ML methods for CWC estima-
tion. Additionally, there is limited research on using 
ML models to estimate CWC under different water 
stress levels, such as fully irrigated, partially stressed, 
and rainfed conditions. Most previous studies have 
focused on modeling CWC without water stress, and 
it is unclear whether these models can be applied to 
other water stress conditions.

This study aimed to develop a model that utilizes 
proximal hyperspectral data and ML algorithms 
to accurately estimate the CWC of sorghum plants 
grown under different water stress levels. Specifically, 
sensitive bands and spectral VIs were selected to esti-
mate sorghum CWC. Input variables were optimized 
using MF-based feature selection and DR methods to 
identify the best-performing ML algorithms.
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Materials and methods

Study area

The study was conducted during the 2020 and 2021 
sorghum growing seasons in Samsun, Türkiye. Its 
geographic coordinates are 41° 36′ N, 33° 55′ E, and 
its altitude is 16 m above mean sea level (Fig. 1). The 
study area is located in a semi-humid weather zone 
with a mean annual temperature of 14.6 °C. Annual 
mean total precipitation in the region is 717.9 mm per 
year from 1990 to 2020. The soils in the experimental 
plots were alluvial and colluvial, with a total available 
water of 177.2 mm  m−1.

Field experiment

In this study, an experimental area of 0.1 hectares was 
utilized to investigate the effects of four irrigation lev-
els: S1 (full irrigation), S2 (70% of S1), S3 (40% of 
S1), and S4 (rainfed) to sorghum CWC. The experi-
mental design involved a randomized complete block 
design with three replications for each irrigation level, 
resulting in 12 treatment plots. Each plot measured 10 
by 6.3 m, with a 2.1-m-wide alley between adjacent 
plots. Seeds were sown on May 15, 2020, and May 
20, 2021, in rows with 0.7 m spacing between rows 
and 0.05 m spacing between plants. Standard cultiva-
tion practices were used to control pests and diseases. 
Sorghum grains were harvested on September 23, 
2020, and September 27, 2021.

Proximal hyperspectral data acquisition

The ASD Field Spec Pro spectrometer was utilized 
to obtain sorghum canopy spectral reflectance values 
from a height of 4.5 m above ground level. The meas-
urements were taken at the same height throughout 
the growing season to detect the changes in vegeta-
tion. Spectral measurements were captured at an angle 
of incidence of sunlight at approximately 45°. Reflec-
tance values were collected in the 325–1075  nm 
range with a spectral resolution of 1 nm. A white cali-
bration panel of  BaSO4 was used to calculate black 
and baseline reflectance. The spectroradiometer used 
in this study was calibrated before each measurement 
to ensure accurate and reliable spectral data. To mini-
mize the impact of external factors such as weather 
and field conditions, 3 points within each plot were 
measured and averaged to generate a single value. 
Measurements were collected at multiple dates corre-
sponding to key growth stages of sorghum (Table 1).

Fig. 1  The location of the 
study area and spatial and 
temporal sorghum height 
changes within the study 
area during 2020. The study 
area is in the northern part 
of Türkiye. The sorghum 
height was measured using 
a UAV at a height of 40 m, 
and the measurements were 
obtained from a canopy 
height model (CHM)

Table 1  Dates of proximal spectral reflectance measurements 
during the 2020 and 2021 sorghum growing season

2020 2021

June 8, 11, 18, 23, 29 15
July 1, 3, 6, 10, 27 4, 6, 10, 13, 

17, 21, 24, 
26, 28

August 3, 6, 12, 17, 19, 24, 28 2, 7, 21, 29
September 3,15 1, 12, 25
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Canopy water content measurements

The data were collected from the experimental field 
on multiple dates in 2020 and 2021. Specifically, the 
dates were 4, 14, 24 July, 5, 25 August, and 14 Sep-
tember 2020, which corresponded to 50, 60, 70, 82, 
102, and 122 days after sowing (DAS). Additionally, 
data were collected on 26 July, 5, 16, 25 August, and 
3, 23 September 2021, which corresponded to 72, 82, 
93, 102, 111, and 131 DAS, respectively. A represent-
ative selection of sorghum plants was obtained from 
12 treatment plots for destructive sampling, and the 
total leaf area of each sample was measured using the 
method given by Tunca et al. (2022). The sorghum’s 
fresh weight ( FW ) was weighed, and dry weight ( DW ) 
was obtained by drying plants at 80  °C until a con-
stant weight was reached. Plant water status was cal-
culated using Eq. 1.

The leaf area index (LAI), a key parameter for 
characterizing crop growth (Tunca et al., 2022), was 
calculated using Eq. 2 as follows:

The LAI is closely related to photosynthesis and 
transpiration in crops, as noted by Meiyan et  al. 
(2022) and Xu et al. (2019). Therefore, compared to 
plant water status, revised version using LAI (CWC) 
has the advantage of showing the difference between 
crops with various water stress levels. In this study, 
CWC was used to assess the sorghum water content, 
and calculated using Eq. 3.

Feature selection

Recursive feature elimination (RFE) method

Recursive feature elimination (RFE) is a feature selec-
tion technique commonly employed in ML to choose 
the most relevant variables for a given model. RFE 
performs by iteratively eliminating variables from a 
dataset and constructing a model from the remain-
ing features. The significance of each feature is then 

(1)Plant Water Status (%) = (
Fw − Dw

Fw

) × 100

(2)LAI =
Total Leaf Area

(Row × Distance)

(3)CWC = Plant Water Status × LAI

graded based on how much the model’s performance 
degrades when the feature is eliminated. The pro-
cess continues until the desired number of features 
is reached (Granitto et  al., 2006). RFE is especially 
beneficial when the number of variables is large, and 
there is a risk of model overfitting. By picking the 
most valuable variables, RFE can increase the mod-
el’s accuracy and interpretability while lowering the 
data’s dimensionality (Kilincer et  al., 2023). Details 
of the RFE method were given in Ilniyaz et al. (2022)

Dimension reduction using PCA analysis

PCA is a frequently applied method for dimension 
reduction in data analysis. First introduced by Karl 
Pearson in 1901 (Pearson, 1901), this technique utilizes 
mathematical algorithms to transform a collection of 
interrelated variables into a reduced set of uncorrelated 
variables known as principal components. DR is used 
with the PCA method to identify patterns and relation-
ships in high-dimensional data by reducing the number 
of dimensions while retaining most of the original vari-
ability. Principal components are ranked according to 
the variance they explain in the data (Hotelling, 1933). 
This allows us to determine which variables contribute 
most to the variation in the data. By transforming the 
original data into a lower-dimensional space, PCA can 
simplify the analysis and visualization of complex data 
sets (Meier et al., 2022).

Machine learning models

In this study, three commonly used ML methods, 
namely RF, SVM, and XGBoost, were identified and 
tested for estimating the CWC of sorghum. These 
models were selected based on their proven perfor-
mance and widespread use in machine learning appli-
cations. RF can process complex relationships and 
provide accurate predictions through an ensemble of 
decision trees (Guan et al., 2022). XGBoost is known 
for its efficient implementation, parallelization, and 
ability to process both linear and nonlinear relation-
ships (Gao et al., 2022), while SVM is more effective 
at processing high-dimensional data and nonlinear 
relationships (Yildirim et  al., 2023). The ML mod-
els and processing steps were implemented using the 
Python programming language, version 3.9, and the 
sci-kit learn library.
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Random forest

RF is a widely used ML algorithm for regression and 
classification tasks. It is an ensemble method that com-
bines multiple decision trees to make a prediction. In 
RF, each tree is constructed by randomly selecting a 
subset of the training data and a subset of the input fea-
tures. This randomization reduces the risk of overfitting 
and improves the model’s accuracy. The final prediction 
of the RF model is the average prediction of all individ-
ual trees (Küçüktopcu, 2023). In this study, 1000 deci-
sion trees were applied to the RF model.

Support vector machine regression

SVM regression is an application of machine learning 
for regression tasks. SVM is a non-parametric model 
that identifies the optimal linear or nonlinear boundary 
between classes of data points. SVM regression aims 
to identify a hyperplane that maximizes the difference 
between the predicted and actual values. The margin is 
the distance between the hyperplane and the data points 
that are closest to it. The hyperplane is chosen to mini-
mize the difference between the predicted and actual 
values while increasing the margin. One of the advan-
tages of SVM is its ability to handle high-dimensional 
data with a relatively small number of samples. In addi-
tion, SVM can handle data with nonlinear relationships 

by using kernel functions to transform the data into a 
higher-dimensional space where the relationship is lin-
ear (Cemek et al., 2022). This study employed the SVM 
regression method using the radial basis kernel function. 
The model parameter epsilon and C of the SVM were 
estimated on all datasets using a grid search method 
with cross-validation.

eXtreme gradient boosting (XGBoost)

XGBoost is a decision-tree-based ensemble machine 
learning algorithm. The XGBoost model has a gradient-
boosting framework that efficiently handles linear and 
nonlinear relationships between input variables and out-
put predictions. One significant advantage of XGBoost 
over other commonly used machine learning approaches, 
such as RF and SVM, is its ability to produce results 
faster due to its parallelized implementation and efficient 
use of hardware resources. XGBoost model can provide 
the importance of each input variable, allowing users to 
determine the most important features contributing to the 
estimation accuracy (Gao et al., 2021).

Vegetation indices

Sorghum CWC was estimated using RF, SVM, and 
XGBoost with 12 different published spectral VIs 
that were previously reported to be highly correlated 

Table 2  List of spectral vegetation indices used in this study to estimate sorghum CWC 

Vegetation index Formula Reference

Difference vegetation index (DVI) λ
800

− λ
670

(Perry Jr and 
Lautenschlager, 1984)

Enhanced vegetation index (EVI) 2.5 ×
(λ

800
−λ

680
)

(λ
800

+6∗λ
680

−7.5∗λ
450

+1)
(Buschmann & Nagel, 

1993)
Greenness index (G) λ

554

λ
677

(Smith et al., 1995)

Optimized soil adjusted vegetation index (OSAVI) (1 + 0.16) ×
(λ

800
+λ

670
)

(λ
800

+λ
670

+0.61)
(Smith et al., 1995)

Simple ratio (SR.) λ
800

λ
670

(Jordan, 1969)

Modified triangular vegetation index (MTVI) 1.2 × (1.2 × (λ
800

− λ
550

) − 2.5 ∗ (λ
670

− λ
550

)) (Haboudane et al., 2004)
Normalized difference vegetation index (NDVI) λ

800
−λ

680

λ
800

+λ
680

(Lichtenthaler et al., 1996)

Photochemical reflectance index (PRI) λ
531

−λ
570

λ
531

+λ
570

(Gamon et al., 1992)

Triangular veg index (TVI) 0.5 × (120 × (
(

λ
750

− λ
550

)

− 200 ×
(

λ
670

− λ
550

)

) (Gitelson et al., 2002)
Vegetation stress ratio (VS) λ

725

λ
702

(White et al., 2008)

Water band index (WBI) λ
950

λ
970

(Sims & Gamon, 2003)

Chlorophyll index red edge (CL_Rededge) λ
800

λ
720

(Gitelson et al., 2003)
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with vegetation structure. The VIs were selected 
based on their effectiveness in estimating CWC. The 
12VIs included two band indices (e.g., DVI, G) and 
three band indices (e.g., EVI, MTVI). The formulas 
of the VIs used in this study are presented in Table 2.

Model evaluations

During 2  years of sorghum growth, 108 samples 
were collected. These samples were randomly split 
into a training set of 75 and a testing set of 33, with 
a 7:3 ratio. ML regression models were built to esti-
mate CWC using full spectra, feature-selected data, 
dimensionally reduced data, and spectral VIs. The 
accuracy of these models was evaluated using three 
metrics: the coefficient of determination  (R2), the 
root mean square error (RMSE), and the mean abso-
lute error (MAE).

Results and discussion

Effect of different water stress levels on spectral 
information

Figure  2 shows the average spectral reflectance of 
sorghum under different water stress levels for the 
2020 and 2021 growing seasons, respectively. The 
spectral reflectance of sorghum varied with growth 
stage and irrigation treatment, but similar patterns 
were observed for each treatment. The peak and val-
ley regions of the spectral curves were consistent for 
each treatment, suggesting that canopy reflection 
was governed by the same principles regardless of 
canopy structure changes. This result is in line with 
Meiyan et al. (2022), who found a strong correlation 
between the peak and trough positions during maize 
growth stages despite changes in canopy structure. 
Similarly, El-Hendawy et  al. (2019) reported simi-
lar troughs around 680, 1200, 1450, and 1950  nm 
for different cultivars and salinity stress levels. As 
the growth stages progressed, its spectral reflectance 

gradually increased in the near-infrared (NIR) region 
(700–1100 nm). In addition, noticeable differences in 
spectral curves due to the irrigation treatments were 
observed among the treatments after DAS 51 in 2021. 
Generally, fully irrigated sorghum had higher NIR 
reflectance values, indicating healthier and more 
vigorous crops. Previous studies have also reported 
a positive relationship between NIR reflectance and 
crop health. For instance, Ren et  al. (2022) found a 
significant correlation between the NIR reflectance 
and winter wheat growth. Likewise, other studies 
have shown that higher NIR reflectance values are 
associated with healthier crops and higher produc-
tivity (Köksal, 2011; Zhu et  al., 2014). However, in 
2020, the S3 treatment exhibited healthier sorghum 
crops compared to the S1 and S2. This outcome could 
be possibly attributed to the S3 treatment, despite 
receiving less water than the other treatments (S1 and 
S2), having favorable soil conditions that allowed for 
better water retention and distribution within the root 
zone. Additionally, the weather conditions during the 
2020 season might have been more conducive to the 
growth and development of the sorghum crops, com-
pensating for the reduced irrigation input in the S3 
treatment.

Sorghum LAI measurement results

LAI of sorghum was measured at various develop-
mental stages. Figure  3 presents box plots of the 
LAI values for each growth phase, while the funda-
mental statistical parameters of the sorghum LAI 
values throughout the growing period are displayed 
in Table  3. The mean LAI value showed a gradual 
increase throughout the growth stages, with the crop 
leaves developing rapidly from the establishment to 
yield formation, achieving a maximum mean LAI 
value of 8.22  m2m−2. The mean LAI value decreased 
slightly to 8.00  m2m−2 during the ripening period. 
This trend is consistent with previous studies that 
reported an increase in LAI as the canopy expands 
and becomes denser during the growing season 
(Olson et al., 2012; Qiao et al., 2022).

STD standard deviation, CV coefficient of 
variance.

Table 3 shows the range, mean, standard deviation 
(STD), and coefficient of variance (CV) of sorghum 
LAI values during the establishment, vegetative, 
flowering, yield formation and ripening stages. The 

Fig. 2  Temporal changes in sorghum spectral reflectance of 
each treatment during the 2020 and 2021 growing seasons. S1, 
S2, S3, and S4 show the average spectral reflectance of sor-
ghum crops grown under different irrigation treatments: S1 is 
the full irrigation, S2 is the %70 of S1, S3 is the %40 of S1 and 
S4 is rainfed

◂
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measurements revealed that the range of LAI values 
gradually increased from 1.19 to 1.20 (CV = 0.14%) 
in the establishment period to 4.90–11.19 
(CV = 15.14%) in the ripening period. The same 
results were reported by Bendorf et  al. (2022), who 
found that maximum sorghum LAI values were 9.51 
(± 1.45)  m2m−2. A statistical analysis of the sorghum 
LAI values throughout the different growth periods 
indicated that the most significant variation in LAI 
values occurred during the flowering stage of growth 
(Fig. 3). This finding is consistent with previous stud-
ies in wheat by Zhang et al. (2022), in cotton by Ma 
et al. (2022) and in rice by Yamaguchi et al. (2020), 
which showed that the highest variability in LAI val-
ues occurred during the flowering period.

Performance of the three ML algorithms using full 
spectra

Table 4 presents the performance of three ML models 
(RF, SVM, and XGBoost) in estimating the water con-
tent of sorghum using full spectra (consisting of 751 
spectral wavelengths). Figure  4 compares measured 
and estimated sorghum CWC values using each ML 
model. The results of this study demonstrated that full 
spectra data could effectively estimate the CWC of sor-
ghum. The highest  R2 and lowest RMSE values were 
obtained using the XGBoost model, with an  R2 of 0.95 
and an RMSE of 33.29. RF was the second-best model, 
with  R2 and RMSE of 0.92 and 42.16, respectively. 
The SVM model had the lowest performance, with an 
 R2 of 0.40 and an RMSE of 132.44. Based on these 

results, the XGBoost model was the most effective ML 
algorithm for determining sorghum CWC using full 
spectra hyperspectral measurements, followed by RF 
and SVM. The superior performance of the XGBoost 
compared to RF and SVM models can be attributed 
to its adaptability algorithm, which belongs to the 
advanced gradient boosting system. XGBoost can cor-
rect residual inaccuracies, unlike RF models, by build-
ing upon the previous tree and generating a new set 
(Chen & Guestrin, 2016; Friedman, 2002). These find-
ings align with a previous study that reported XGBoost 
as a robust algorithm for estimating CWC using remote 
sensing data (Zhou et  al., 2022). On the other hand, 
SVM was the most ineffective ML model among the 
models used in this study. This could be explained by 
the number of samples used in this study. Hoi et  al. 
(2009) stated that SVM performs poorly on small-size 
datasets. Additionally, SVM is highly sensitive to data-
set outliers. This could be the potential reason for the 
poor SVM performance (Guo et al., 2023).

Fig. 3  The changes of LAI 
and mean LAI values dur-
ing the sorghum growing 
periods for all irrigation 
treatment plots. Statistical 
significance groups (a, b, c) 
indicate the results of the 
Tukey test, highlighting the 
stages that differ signifi-
cantly from each other

Table 3  Variation of LAI values during the sorghum growth 
periods

Growth periods LAI Dataset

Range Mean STD CV (%)

Establishment 1.19–1.20 1.19 0.001 0.14
Vegetative 1.79–3.42 2.62 0.53 20.22
Flowering 2.45–11.04 7.38 1.80 24.48
Yield Formation 4.87–11.09 8.22 1.29 15.77
Ripening 4.90–11.10 8.00 1.21 15.14
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Feature selection using RFE

Three machine learning-based regression models (RF, 
SVM, and XGBoost) were optimized by applying the 
RFE feature selection method. The maximum number 
of selected variables was set to 30, and selected vari-
ables were exhibited in Table  5. Figure  5 illustrates 
that the RMSE gradually decreased with an increas-
ing number of added wavelength bands until minimum 
RMSE values were obtained. The optimized mod-
els were established using reflectance values of these 
selected wavelengths. Among the ML models, the RF 
model, with 19 features selected, achieved the highest 
 R2 value of 0.90 and the lowest RMSE value of 56.05, 
followed by the XGBoost model, using 22 features, 
achieved an  R2 value of 0.86 and an RMSE value of 
66.55. Using only three selected features, the SVM 
model had the lowest performance, with an  R2 value of 
0.50 and an RMSE value of 127.64 (Fig. 5). According 

to the results, the XGBoost model demonstrated less 
accuracy than the RF model. This difference in perfor-
mance could be attributed to the inherent differences 
in the XGBoost and RF algorithms, dataset character-
istics, and the specific interactions and relationships 
captured by each algorithm during the feature selection 
process (Li et  al., 2023). Overall, the results indicate 
that ML algorithms based on selected spectral bands 
performed comparably to those that used the whole 
spectrum, which is consistent with previous studies 
(Elsherbiny et  al., 2021; Meiyan et  al., 2022; Ndlovu 
et al., 2021; Zhao et al., 2022).

Estimation of canopy water content using dimension 
reduction via PCA

The PCA method was performed on the proximal 
hyperspectral data to obtain a lower-dimensional sub-
space. The number of components was selected based 

Table 4  The performance 
of ML model used in this 
study to estimate sorghum 
CWC using full spectra for 
training, testing, and whole 
dataset

Models Training set Test set All dataset

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

RF 0.95 34.09 26.74 0.82 64.68 47.51 0.92 42.16 30.97
SVM 0.40 129.22 94.97 0.37 144.33 110.71 0.40 132.44 98.18
XGBoost 0.98 16.50 10.76 0.83 66.15 47.55 0.95 33.29 18.26

Fig. 4  Comparison of measured and estimated crop water 
content using RF, SVM, and XGBoost models. The x-axis rep-
resents the estimation of sorghum CWC values, while y-axis 
represents the measured CWC values obtained through direct 

field measurements. Green and Red color indicate the train and 
the test points, respectively. The  R2 value of train, test and all 
points used in ML model are shown in the figure
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on the cumulative variance ratio, where only those 
components with a cumulative variance greater than 
95% were selected. A higher threshold would have 
required more components and increased the com-
plexity and redundancy of the data. A lower thresh-
old would have resulted in more information loss 
and reduced accuracy and reliability of the data. The 
choice of 95% as the optimal threshold is consistent 
with previous studies that used PCA to process hyper-
spectral data for various applications (Salata et  al., 
2022; Winder et al., 2009). Figure 6 shows the cumu-
lative contribution rate of each component calculated 
with PCA analysis. Based on the DR via PCA analy-
sis, the number of components in the hyperspectral 
data was set to 4. The first component had the highest 
explaining variance ratio of 91.12%, while the first 
four components, up to 95.76%, explained the origi-
nal hyperspectral data, indicating that only 4.24% of 
the hyperspectral information was not explained.

RF, XGBoost, and SVM models were developed 
using dimensional reduced proximal hyperspectral 

data obtained through PCA analysis. The performance 
of these models was evaluated using a Taylor diagram 
(Fig. 7), where the purple square represents the refer-
ence standard. The Taylor diagram shows that the 
XGBoost model has the lowest RMSE (45.77) values 
among the three ML models used in this study, indicat-
ing its superior reliability in estimating sorghum CWC 
using dimensional reduced proximal hyperspectral 
data. Therefore, XGBoost could be considered a reli-
able and accurate tool for advancing precision agri-
culture by estimating CWC. This result is consistent 
with a previous study that reported the advantage of 
XGBoost over the other ML methods for hyperspectral 
classification tasks (Samat et al., 2020).

Performance of published vegetation indices

In this study, three ML models (RF, SVM, and 
XGBoost) were employed to estimate the CWC of 
sorghum using 12 different spectral VIs, including 

Table 5  Specific wavelengths selected by each ML model through the RFE method for estimating crop water content

Models Number of wave-
lengths

Selected spectral reflectance wavelengths

RF 19 344, 347, 353, 367, 381, 394, 428, 560, 902, 916, 924, 930, 959, 963, 972, 981, 990, 1041, 1057
SVM 3 963, 972, 981
XGBoost 22 344, 347, 353, 367, 381, 394, 428, 560, 763, 902, 916, 924, 930, 947, 959, 963, 972, 981, 990, 

1041, 1057, 1067

Fig. 5  Relationship 
between the number of 
selected variables and root 
mean square error values. 
Each data point on the line 
plot represents a specific 
number of selected vari-
ables and its corresponding 
RMSE value. The colors 
used in the lines represent 
the ML models, while the 
orange points indicate the 
achieved minimum RMSE 
value
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DVI, EVI, G, OSAVI, SR, MTVI, NDVI, PRI, TVI, 
VS, WBI, and CL_Rededge. Figure  8 and Table  6 
show the performance of ML models using different 
spectral VIs. The results of the SVM analysis indi-
cated that most VIs exhibited similar performance 
when applied to both training and test sets. Among 
the VIs used in this study, EVI had the highest  R2 val-
ues of 0.53 and 0.51 for training and test sets, respec-
tively, while OSAVI followed closely with  R2 values 
of 0.44 and 0.45, respectively. However, G, PRI and 
WBI performed poorly with near-zero  R2 values.

In contrast to the SVM algorithm, RF and 
XGBoost ML algorithms performed significantly bet-
ter on all VIs with high  R2 values except for G and 
VS. Among the VIs used in this study, CL_Rededge 
and EVI showed the best performance on both algo-
rithms for the test sets. Overall, XGBoost performs 
slightly better than RF based on  R2 values, with CL_
Rededge, MTVI, and EVI being the best-performing 
VIs, while CL_Rededge, EVI, and OSAVI are the 
best-performing VIs in RF. However, the RMSE and 
MAE values for some indices are still quite high, sug-
gesting that there is still room for improvement. The 
results suggest that the choice of VI can significantly 
impact the reliability of sorghum CWC estimation. 
In particular, VIs that include the blue and red-edge 
region of the electromagnetic spectrum (e.g., CL_
Rededge) tend to perform better than those that rely 
only on the visible and near-infrared regions (e.g., 

NDVI and TVI). These findings align with previous 
research by Zhang et al. (2021), which identified the 
water-associated spectral bands. Gómez-Candón et al. 
(2021) stated that the red-edge region is mainly influ-
enced by canopy structure and chlorophyll content, 
which is highly correlated with CWC. Also, Wang 
et al. (2015) indicated that red-edge-based VIs could 
indicate water stress effectively.

Fig. 6  Cumulative variance 
rate of each component. 
The x-axis represents the 
components, numbered 
sequentially, while the 
y-axis represents the cumu-
lative variance rate

Fig. 7  Taylor Diagram results for sorghum CWC estimation 
with RF, SVM and XGBoost ML models used in this study
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Fig. 8  Comparison of machine learning performance for RF, SVM, and XGBoost using different vegetation index and radar chart 
visualization of  R2, RMSE, and MAE metrics
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Conclusion

This study investigated the effects of different water 
stress levels on spectral information, LAI, and the 
performance of three ML algorithms in estimating 
the CWC of sorghum. The results show that sor-
ghum’s spectral reflectance varies with growth stage 
and irrigation treatment, but consistent patterns are 

observed for each treatment. Moreover, fully irrigated 
sorghum crops had higher near-infrared (NIR) reflec-
tance values, indicating better health and more vigor-
ous growth. The LAI of sorghum gradually increased 
throughout the growth stages, with the most signifi-
cant variation observed during the flowering stage.

XGBoost was the most effective ML algorithm 
for determining sorghum CWC using full spectra 

Table 6  Comparison of 
ML model (RF, SVMand 
XGBoost) performance on 
vegetation indices for train 
and test data

ML Model Vegetation Index Train Test

R2 RMSE MAE R2 RMSE MAE

RF DVI 0.91 52.54 43.49 0.35 135.3 98.02
EVI 0.9 54 42.95 0.58 109.2 79.17
G 0.76 85.26 68.15 0.19 150.89 123.74
OSAVI 0.9 54.15 42.85 0.52 116.8 84.19
SR 0.91 50.85 39.54 0.08 161.43 115.65
MTVI 0.88 59.81 48.73 0.48 121.24 89.44
NDVI 0.9 53.72 41.2 0.09 175.6 116.63
PRI 0.66 99.88 76.7 0.32 138.95 111.6
TVI 0.87 61.12 50.58 0.46 123.42 97.11
VS 0.8 76.84 58.86 0.08 174.43 131.47
WBI 0.67 98.85 73.31 0.01 168.23 129.19
CL_Rededge 0.69 96.36 68.57 0.66 97.98 77.7

SVM DVI 0.48 123.84 95.59 0.46 123.84 98.41
EVI 0.53 118.59 91.12 0.51 117.99 93.81
G 0.21 153.1 114.97 0.01 169.1 137.92
OSAVI 0.44 129.04 98.22 0.45 124.36 97.96
SR 0.23 151.57 114.36 0.17 153.03 124.37
MTVI 0.44 128.41 95.63 0.39 130.84 98.88
NDVI 0.43 129.8 98.31 0.42 128.06 104.72
PRI 0.02 173.89 130.44 0.02 170.07 130.19
TVI 0.4 134.04 102.18 0.33 137.08 104.48
VS 0.26 148.22 111.81 0.05 163.53 131.94
WBI 0.02 174.31 130.18 0.04 171.47 133.18
CL_Rededge 0.02 170.24 130.71 0.03 165.16 130.68

XGBoost DVI 0.76 84.61 62.03 0.47 121.75 99.04
EVI 0.81 74.33 56.33 0.54 113.54 90.45
G 0.73 89.17 69.66 0.23 147.47 121.42
OSAVI 0.87 61.37 46.00 0.47 122.04 87.26
SR 0.78 81.45 60.06 0.18 152.25 113.44
MTVI 0.75 86.28 67.37 0.59 106.96 88.78
NDVI 0.67 99.66 75.24 0.19 151.40 120.24
PRI 0.61 108.28 81.86 0.29 141.56 118.00
TVI 0.77 82.06 64.21 0.49 119.52 95.86
VS 0.66 99.81 75.05 0.02 168.00 132.71
WBI 0.55 115.09 85.21 0.19 150.95 120.76
CL_Rededge 0.68 97.90 67.98 0.72 88.93 67.11
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hyperspectral measurements, followed by RF and 
SVM. The RFE method was used to select the opti-
mal spectral reflectance wavelengths for the mod-
els, and PCA was used to reduce the dimensionality 
of the hyperspectral data. The results revealed that 
the RF model achieved the highest  R2 and the low-
est RMSE values, while the XGBoost model demon-
strated superior accuracy and reliability in estimating 
CWC using dimensionality-reduced hyperspectral 
data. These findings have significant implications for 
precision agriculture, as accurate and reliable esti-
mates of CWC can help farmers optimize irrigation 
and fertilizer applications, leading to improved crop 
yields and resource efficiency.

The study also highlights that the performance of 
ML models for estimating sorghum CWC varies sig-
nificantly depending on the VI used. While some VIs 
performed poorly, such as the NDVI and the MSAVI, 
others, such as the CL_Rededge and EVI, performed 
better. Furthermore, XGBoost performed slightly 
better than RF and SVM among the three ML mod-
els tested. These findings suggest that the choice of 
VI is crucial for accurate CWC estimation, and VIs 
that include the red-edge region tend to perform bet-
ter. However, further improvements are necessary to 
increase the accuracy of sorghum CWC estimation.

In summary, this study provides valuable insights 
into the effects of water stress levels on spectral infor-
mation, LAI, and the performance of ML algorithms 
in estimating the CWC of sorghum. The findings 
have important implications for precision agriculture, 
and future research can further explore the potential 
of ML algorithms and hyperspectral data for estimat-
ing other crop parameters to support sustainable and 
efficient agricultural practices.
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