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Bell pepper yield estimation using time series unmanned
air vehicle multispectral vegetation indexes and

canopy volume

Emre Tunca * and Eyüp Selim Köksal
Ondokuz Mayıs University, Department of Agricultural Structures and Irrigation,

Agriculture Faculty, Samsun, Turkey

Abstract. Accurate and timely crop yield estimation prior to harvest is important for agricul-
tural management, agricultural economy, and food security. In many cases, the farmers estimate
the yield visually. Further, several crop simulation models have been developed to estimate yield
accurately. However, these are not used efficiently because of their requirements for enormous
amounts of data and their inability to show the spatial differences of yield in the field. Recently,
the rapid development of unmanned air vehicle (UAV) technologies has shown great potential to
estimate crop yield accurately and show the spatial heterogeneity in the field. We estimate the
bell pepper yield with time series, high-resolution UAV multispectral images. To do so, canopy
volume and five different spectral vegetation indices used widely were calculated. Seven UAV
flight missions were conducted between June and August of 2019. Various linear regression
models were developed to estimate the bell pepper yield based on the canopy volume values
and vegetation indices. The results showed that the bell pepper canopy volume fit the yield
best with the minimum estimation error [coefficient of determination ðR2Þ ¼ 0.93 and root
mean square error ðRMSEÞ ¼ 2.30 tons ha−1]. In addition, a significant correlation was found
between the enhanced vegetation index and bell pepper yield (R2 ¼ 0.87 and RMSE ¼
3.16 tons ha−1). © 2022 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1
.JRS.16.022202]

Keywords: bell pepper yield; unmanned air vehicle; multispectral image; vegetation index;
canopy volume; enhanced vegetation index.
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1 Introduction

Vegetables are essential for human health and nutrition because of their high protein, carbohy-
drate, enzyme, vitamin, and mineral content.1 Given the global population growth rate, the pro-
duction of a greater quantity of vegetables of higher quality is necessary to ensure food security.
Therefore, a robust solution is needed to prevent interannual fluctuations in yield, and monitor-
ing vegetable farms to schedule irrigation and fertilizer and pesticide application is vital to ensure
adequate yields.

Remote sensing (RS)-based monitoring tools are used widely in cartography,2 geology,3 ecol-
ogy,4 forestry,5 and agriculture.6 In the past two decades, RS has become a prominent tool for
monitoring crops in agriculture as well.7 RS allows rapid, inexpensive, and nondestructive veg-
etation monitoring.8 In this context, significant research results on RS techniques’ use have been
reported related to vegetation monitoring,9 evapotranspiration mapping,10 and estimation of crop
biophysical parameters, such as height,11 biomass,12 and yield.13 Recently, yield estimation has
become an important issue for those who make decisions about agricultural policy, food security,
agricultural economy, and insurance. For instance, the regional winter wheat yield in China was
estimated using MODIS satellite images.14 Further, to reach a target profit, farmers need to esti-
mate the amount of yield before harvest to schedule agricultural treatments, such as fertilization,
irrigation, and pest control.

*Address all correspondence to Emre Tunca, emre.tunca@omu.edu.tr

1931-3195/2022/$28.00 © 2022 SPIE

Journal of Applied Remote Sensing 022202-1 Apr–Jun 2022 • Vol. 16(2)

https://orcid.org/0000-0001-6869-9602
https://doi.org/10.1117/1.JRS.16.022202
https://doi.org/10.1117/1.JRS.16.022202
https://doi.org/10.1117/1.JRS.16.022202
https://doi.org/10.1117/1.JRS.16.022202
https://doi.org/10.1117/1.JRS.16.022202
mailto:emre.tunca@omu.edu.tr
mailto:emre.tunca@omu.edu.tr
mailto:emre.tunca@omu.edu.tr
mailto:emre.tunca@omu.edu.tr


Traditionally, farmers evaluate crop yield based on their experiences, field observations, and/
or plant samples taken from specific regions in their fields. In addition, yield can be estimated
before the harvest using the statistical relation between agrometeorological parameters and crop
properties15 and various crop models.16 However, yield can vary from one point to another within
a field depending upon the variation in soil physical and chemical properties, irrigation and
fertilization scheduling and uniformity, the distribution of diseases and pests, and the effective-
ness of chemical application against them. Within this framework, point scale yield estimation
approaches do not consider spatial differences in the field, while RS can show spatial and tem-
poral vegetation differences in the field.17 As a result, yield can be estimated using these more
efficient and precise RS techniques.

Some studies have shown that yield can be estimated successfully using satellite18 and
manned aircraft19 systems. However, satellite images have some limitations attributable to their
spatial and temporal resolution and the quality of images acquired under cloudy conditions.
Although images with high spatial and temporal resolution can be obtained with manned
aircraft, these platforms cannot be used for small-scale farmland because of the mission’s high
cost.20

To fill this gap, unmanned air vehicle (UAV) systems have been developed to acquire images
with high spatial and temporal resolution.21 A UAV is a type of aircraft with high maneuver-
ability that can fly autonomously or with a remote controller.22 As sensor technology has
advanced, the weight of remote sensors has decreased, and thus, most UAVs are able to carry
these sensors. Accordingly, this RS platform has become one of the crucial alternatives to other
such platforms to monitor crop cultivation areas. In a study Ref. 23 conducted, normalized differ-
ence vegetation index (NDVI) values obtained from images, from satellites, manned aircraft, and
UAV systems, were compared. The authors concluded that UAVs can be used to monitor small-
scale fields efficiently. They also indicated that UAV images can show spatial differences better
than satellite images can. In another study, mango yield was estimated successfully [coefficient
of determination (R2) greater than 0.77 and root mean square error (RMSE) (%) values that
ranged between 20% and 29%] using high-resolution UAV multispectral images.24 In addition
to these studies, other research has been conducted on different crops, such as cotton,13 rice,25

grapes,26 maize,27 sugarcane,28 soybean,29 barley,30 rapeseed,31 and sunflower.17 In recent years,
many studies have used machine learning algorithms to estimate crop yield. For example, Ref. 13
combined three different machine learning algorithms (random forest, support vector machine,
and K-nearest neighbors) to estimate alfalfa yield. Their results showed that an ensemble model
estimated alfalfa yield accurately (R2 ¼ 0.87). Reference 32 estimated potato yield using UAV-
based RGB and hyperspectral images and a random forest regression model (R2 ¼ 0.63). In
addition, Refs. 29 and 30 used a deep learning approach successfully in barley (accuracy greater
than 83%) and soybean (R2 ¼ 0.70), respectively. Further, some researchers have combined a
crop growth model and RS-based data. For example, Ref. 33 estimated sugarcane yield by inte-
grating plant height values into the soil–water–atmosphere–plant model, whereas Ref. 34 esti-
mated wheat leaf area index from UAV point cloud data, after which these values were used in
the SAFY model to estimate wheat yield.

The main objective of this study was to explore the use of high-resolution UAV multispectral
images to estimate bell pepper yield during the growing period. The specific goals of this study
were (1) to evaluate the UAV based high-resolution multispectral images’ ability to monitor bell
pepper during the growing season, (2) to compare the performance of vegetation indices and
canopy volume on different dates to estimate bell pepper yield, and (3) to test the robustness
of the bell pepper yield estimation model.

2 Materials and Methods

2.1 Study Area

The study area (41°36′09.17″, altitude 15 m above sea level) was located at the Soil and Water
Resources Research Center of the Black Sea Agricultural Research Institute in the county of
Bafra, Samsun, Turkey (Fig. 1). The study area’s climate is characterized as subhumid.35
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According to long-term climatic data, the annual mean precipitation is 694 mm, the mean maxi-
mum air temperature is 27°C in August, and the minimum air temperature is 3.7°C in February.
The mean air temperature and relative humidity are 14.4°C and 72.7%, respectively (MGM,
2019).36 Reference 35 stated that the experimental area’s soils were classified as clay in the
top 0 to 90 cm and clay-loam from 90 to 120 cm. The storage capacity of the plant available
water (PAW) at 0 to 30 cm, 30 to 60 cm, 60 to 90 cm, and 90 to 120 cm depths was 0.142, 0.140,
0.155, and 0.154 m3 m−3, respectively.

2.2 Experimental Design and Treatments

Four water management regimes (full irrigation, S1; S2, 70% of S1; S3, 40% of S1; rain-fed, S4)
were applied in this study. A randomized complete block experimental design was used with
three replications. The irrigation times of the S1 treatment plots were determined based on soil
water measurements, and a management allowable deficit value of 40% was used. Soil water
content measurements of all experimental plots were carried out at each 30-cm depth of a 120-cm
soil profile throughout the growing season. Irrigation was scheduled based on the soil water
depletion within bell pepper’s effective rotting depth (60 cm). A 40% depletion of the total
available soil water holding capacity was considered the threshold of irrigation timing.
Thus, the amounts of irrigation in each water application for the S1 treatment were determined
with respect to depth as the difference between field capacity and the soil moisture content mea-
sured. The irrigation timing of the S2 and S3 treatments was the same as S1, and the irrigation
percentages of the S2 and S3 treatments were 70% and 40% of the S1 treatment, respectively.
Crops in the S4 treatment plots were grown under rain-fed conditions. However, to provide
appropriate soil moisture conditions for transplanted bell pepper crops, on 16 and 25 days after
planting (DAP), a total of 30 mm of irrigation water was applied. After DAP 25, irrigation water
was applied to the plots based on experimental treatments, and no irrigation was applied to the S4
plots. Irrigation was applied using a drip irrigation system designed for this trial by considering
the soil physical properties, crop spacing, and experimental water applications.

Each trial plot’s dimensions were 5.6 × 7.0 m, and edge effects were considered during each
harvest. Thus, each harvest plot was 4.2-m wide (six plant rows) and 4.8-m long with a 2.1-m
space between each plot (Fig. 2). Bell pepper seedlings were also transplanted in spaces between
the plots to protect experimental crops from the negative effect of micrometeorological events
that can occur on bare soil.

Fig. 1 Bell pepper experiment area at Black Sea Agricultural Research Institute in 2019.
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2.3 Soil Water Budget and Crop Evapotranspiration

The daily reference evapotranspiration (ETo) was calculated using the FAO Penman–Monteith
equation.37 In addition, each experimental plot’s actual evapotranspiration values were calcu-
lated based on the soil water budget approach for a period between the two consecutive soil
water content measurements. To improve the soil water budget results’ accuracy, evapotranspi-
ration of the root zone area (ETarz ) and of the entire cultivation area (ETa) were calculated sep-
arately based on the area wetted and percentage of vegetation cover. The procedures to calculate
ETarz and ETa can be found in Ref. 35.

2.4 Bell Pepper Agronomy and Yield

The bell pepper variety used in this study was Kundu F1, which is grown widely in the study
region. According to this variety’s characteristics, the fruit height is 7 cm and width is 6 cm under
ideal growing conditions. Bell pepper (Capsicum annum L.) seedlings were transplanted on May
15, 2019, and the plants were grown in 70-cm rows where they were spaced 40 cm apart. Based
on the soil chemical analyses results, a total of 0.06 tons ha−1 P2O5 and 0.03 tons ha−1 N fer-
tilizer were applied before transplanting, and 0.1 tons ha−1 N fertilizer was applied during the
initial and development stages as a five-equal part. While N fertilizer was applied via the drip
irrigation system for the S1, S2, and S3 treatments, it was applied equally by hand in the S4 plots.
Weeds were controlled using herbicides in the early season, and thereafter, weeding was per-
formed with a hoe.

All mature bell pepper fruits were harvested by handpicking, and a total of six harvests was
obtained. Yield and quality parameters, such as fruit height, width, and thickness, were measured
after each harvest.

2.5 UAV System, Flight Planning, and Image Processing

The DJI S1000+ octocopter with an A2 flight control system (DJI, Shenzhen, China) was used as
the UAV in this study. It has a maximum payload capacity of 11 kg and maximum flight duration
of 15 min under optimal weather conditions. DJI Datalink was used to connect the ground con-
trol system and UAV, and Universal Ground Control Station (UGCS) software was used for
mission planning and autonomous flight.

High-resolution multispectral images were obtained from the Micasense Altum (Seattle,
Washington, United States) sensors. This camera can capture blue (475 nm), green (560 nm),
red (668), RedEdge (717 nm), near-infrared (NIR) (840 nm), and thermal images (8 to 14 μm)
simultaneously. The multispectral and thermal sensors’ resolution are 5.2 and 81 cm, respec-
tively, 120-m above ground level. This camera has a sunshine sensor to measure downwelling
irradiance during the flight. Further, it has a global positioning system (GPS) that obtains loca-
tion information for each image and has a calibration reflectance panel to calibrate the irradi-
ance value.

Fig. 2 Experimental design showing the distribution of plots in the study.
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The same mission plan with parallel paths was used for each flight, which allowed the UAV
system to capture several multispectral images and cover 12 experimental plots. The flight
mission was planned at 40 m above ground level at a speed of 2 m s−1. To obtain high-quality
mosaic images, multispectral imagery was captured with 80% sidelap and overlap. Accordingly,
the multispectral camera’s image capturing interval and distance between flight paths were
calculated based on the UAV’s flight height and speed, and specific parameters related to the
camera, such as field of view degree, the maximum capture rate per second, and focal length.

Multispectral image sets consisting of five separate spectral bands were obtained. Because
each pixel value of these images was acquired as a digital number (DN), raw multispectral pixel
values were converted to absolute reflectance values using Eq. (1)

EQ-TARGET;temp:intralink-;e001;116;615L ¼ Vðx; yÞ × a1
g
×

p − pBL

te þ a2y − a3tey
; (1)

where L is the spectral radiance (W∕m2∕sr∕nm), Vðx; yÞ is the vignette polynomial function for
each pixel, a1, a2, and a3 are the coefficients for the radiometric calibration, g is the sensor gain
(stored in metadata), p is the normalized raw image pixel values (DN), pBL is the value of the
black level (stored in metadata tag), and te is the exposure time.

The radial vignette model was used to correct the radial reduction of brightness from the
image’s center to the edges. Equation (2) was applied to the radiance images for vignette cor-
rection

EQ-TARGET;temp:intralink-;e002;116;491

Icorrectedðx; yÞ ¼
Iðx; yÞ

k
;

k ¼ 1þ k0 × rþ k1 × r2 þ k2 × r3 þ k3 × r4 þ k4 × r5 þ k5 × r6;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − cxÞ2 þ ðy − cyÞ2

q
; (2)

where Icorrectedðx; yÞ and Iðx; yÞ are the corrected and original image pixel intensity, k is the
correction factor, and r is the image pixels’ distance from the vignette center. Python 3.6 was
used to convert the raw, high-resolution multispectral images to reflectance, remove lens distor-
tions, and for vignette correction. The Python codes used in this study and details of the formulas
can be found at https://github.com/micasense/imageprocessing (last accessed May 11, 2020).
Agisoft Metashape 1.6.3 was used to create orthomosaic images according to the procedure given
by the camera’s manufacturer.38 The workflow, parameters, and settings used to generate dense
cloud, digital elevation map (DEM), and orthomosaic images are provided in Table 1.

Table 1 Agisoft Metashape Processing Options.

Workflow Parameter Setting

Align photos Accuracy High

Key point limit 40,000

Tie point limit 4000

Optimize camera alignment General parameters Fit f , cx − cy , k1, k2, k3, b1, b2, p1, and p2

Build dense cloud Quality Medium

Depth filtering Aggressive

Build DEM Type WGS 84/UTM Zone 36 N (EPSG::32636)

Source data Dense cloud

Interpolation Extrapolated

Build orthomosaic Surface DEM

Blending mode Mosaic (default)
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Spectral vegetation indices were calculated using the corrected orthomosaic reflectance
images. A summary of the vegetation indices used is given in Table 2.

Agisoft Metashape software was also used to calculate the bell pepper canopy volume. To do
so, shapefiles that cover each plot’s harvest area were created separately using a polygon drawing
tool. In the second step, each experimental plot’s canopy volume was determined in which each
plot shapefile’s lowest elevation height was defined and considered the ground elevation. Thus,
for each plot, ground elevation values were calculated separately. Each canopy volume was
calculated based on the differences between bell pepper canopy height and a plot’s ground eleva-
tion. Details of the volume calculations can be found in Ref. 44.

2.6 Data Analysis

Correlation analyses were performed among the high-resolution vegetation index maps, canopy
volume, and bell pepper yield. According to the correlation coefficient (r), the best time intervals
were determined to estimate yield using vegetation indices and the canopy volume. Bell pepper
yield estimation models for each spectral vegetation index and canopy volume were developed
with regression analysis to estimate yield. The R2 and the RMSE were used to evaluate these
models’ performance.

3 Results and Discussion

3.1 Soil Moisture and Irrigation Water Amount Results

Bell pepper ETarz and (ETa) findings, amounts of irrigation water applied, amounts of rainfall
received, and estimated ETo values are given in Table 3. Irrigation amounts of 402.2, 299.5,
196.8, and 60.0 mm were applied to S1, S2, S3, and S4, respectively, during the bell pepper
growing period. The total ETo and rainfall values related to the growing season were 547.3 and
174.7 mm, respectively. The seasonal ETarz values calculated ranged from 288.8 to 566.7 and the
ETa values ranged from 217.3 to 356.5 mm. Reference 45 reported that bell pepper’s seasonal
ETarz ranged from 309 to 528 mm. In another study, seasonal red pepper ETarz values that ranged

Table 2 List of used vegetation indexes in the study to estimate bell
pepper yield and their references.

Vegetation index References

NDVI ¼ ðNIR−RedÞ
NIRþRed Tucker, 197939

SAVI ¼ ð1þ LÞ × ðNIR−RedÞ
ðLþNIRþRedÞ Huete, 198840

SR ¼ NIR
Red Aparicio et al., 200041

EVI ¼ G × ðNIR−RedÞ
NIRþðC1�Red−C2�BlueÞþL Liu and Huete, 199542

Where NIR, Red, Blue are the orthomosaic reflectance images, L (set at 0.5) is the
soil adjustment factor to reduce soil noise effect,43 G is the gain factor (G=2.5), and
C1 (set at 6) and C2 (set at 7.5) are the coefficients of aerosol resistance term.

Table 3 Total applied amount of irrigation water, total received rainfall, seasonal
crop evapotranspiration, and reference evapotranspiration.

Treatment Irrigation (mm) Rainfall (mm) ETarz (mm) ETa (mm) ETo (mm)

S1 402.2 174.7 566.7 356.5 547.3

S2 299.5 462.9 298.2

S3 196.8 421.2 273.6

S4 60.0 288.8 217.3
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from 30 to 567 mm were reported.46 Differences in bell pepper ETarz values may be attributable
to differences in climatic conditions, soil properties, and the technique used to measure evapo-
transpiration. It can be said that the results of the bell pepper ETarz values in this study agree with
those in previous research.

3.2 Bell Pepper Yield and Fruit Quality Results

Bell pepper yields and fruit quality parameters are provided in Table 4. A total of six harvests
was carried out during the growing season in 2019. While the first harvest was performed on
DAP 46, the last was carried out on DAP 103. The highest and lowest yields were obtained from
the S1 and S4 treatments, respectively. Table 4 shows that bell pepper yields ranged from 24.8 to
51.4 tons ha−1, and there were significant differences in the yield values among the irrigation
treatments (p < 0.05). According to the least significant difference test results, three groups were
identified, a (S1), b (S2), and c (S3 and S4). The results of this study highlight that the bell
pepper yield was correlated highly with irrigation regimes. These experimental results are con-
sistent with those in previous studies. Reference 47 stated that bell pepper yields could range
from 31.76 to 50.72 tons ha−1. Reference 48 reported minimum and maximum bell pepper yield
values of 24.5 and 47.5 tons ha−1, respectively. Reference 46 reported that yields ranged from
10.89 to 44.92 tons ha−1 in 2009, and 4.47 to 63.64 tons ha−1 in 2010 under the Çanakkale,
Turkey climate conditions. Reference 49 indicated that water stress has a significant adverse
effect on bell pepper yield. Compared with previous studies, different yield values were obtained
in this research, which may be attributable to environmental factors, irrigation methods and
amounts, bell pepper variety, and other agricultural practices. Bell pepper fruit quality param-
eters (average width, height, and thickness) are shown in Table 4. As the table shows, the results
indicate that the S1 treatment is superior to other irrigation treatments with respect to all fruit
quality parameters. In contrast, according to the parameters measured, fruit quality was poorest
under the S4 treatment condition. The highest values for fruit width, height, and thickness were
6.14 cm, 7.04 cm, and 3.35 mm, respectively, for S1, and the lowest values were 5.03 cm,
5.69 cm, and 2.58 mm, respectively, for S4. These results are consistent with those in Ref. 50,
which reported that bell pepper canopy width ranged from 6.6 to 7.5 cm under full irrigation,
whereas Ref. 51 stated that bell pepper fruit thickness varies depending upon the amount of
irrigation. This study’s findings on fruit thickness are consistent with those in Ref. 51, which
also found that the maximum and minimum bell pepper fruit thickness was 3.47 and 2.74 mm,
respectively. Generally, these results are similar to those in previous studies.

3.3 Spectral Vegetation Indices and Canopy Volume Results

7 UAV flight missions were conducted on different dates (DAP 44, 49, 56, 63, 72, 87, and 103)
throughout the bell pepper growing season. The mean NDVI, soil adjusted vegetation index
(SAVI), simple ratio (SR), and enhanced vegetation index (EVI) values of each experimental
plot were obtained on each flight date. Their graphical change throughout the growing season
is shown in Fig. 3, and an example of the maps generated related to spectral vegetation indices
associated with DAP 87 is shown in Fig. 4. As Fig. 3 shows, from seedling to DAP 56,

Table 4 Effects of deficit irrigation on bell pepper yield and average fruit size
during the growing period.

Irrigation treatments
Yield

(tons ha−1)
Fruit width

(cm)
Fruit height

(cm)
Fruit thickness

(mm)

S1 51.49 6.14 7.04 3.35

S2 33.21 5.69 6.55 2.87

S3 30.77 5.34 6.10 2.60

S4 24.82 5.03 5.69 2.58
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Fig. 3 Changes of vegetation index values in bell pepper experiment plots throughout the growing
season.

Fig. 4 Bell pepper vegetation index maps were generated from high-resolution multispectral UAV
images showing the variation of experimental plots on August 10, 2019 (DAP 87).

Tunca and Köksal: Bell pepper yield estimation using time series unmanned air vehicle multispectral. . .

Journal of Applied Remote Sensing 022202-8 Apr–Jun 2022 • Vol. 16(2)



no significant differences among plots were found in all vegetation indices. In contrast, all
parcels’ vegetation index values increased from DAP 63 to 87. Accordingly, the effect of differ-
ent amounts of irrigation on bell pepper vegetation levels appeared after DAP 63. During the
period between DAP 63 and 87, the highest and lowest vegetation index values were found in
the S1 and S4 treatment plots, respectively.

Bell pepper NDVI values ranged from 0.23 to 0.79 during the growing season. While the
NDVI value peaked on DAP 87, the lowest value was found on DAP 56. Generally, the plots’
NDVI values were consistent with the irrigation treatments, and the results agree with those
obtained for bell pepper,52 wheat,53 green bean,54 and cotton.55

The changes in SAVI during the growing period are shown in Fig. 3. The maximum and
minimum SAVI values were 0.66 and 0.23, respectively. These values were calculated on
DAP 87 (maximum value) and DAP 44 (minimum value). The full irrigation treatment (S1)
had the highest SAVI and NDVI values. Similarly, the lowest SAVI and NDVI values were
obtained from the rain-fed S4 treatment. The results showed that different amounts of irrigation
lead to different SAVI values in irrigation treatment plots. Reference 56 found that SAVI is
correlated highly with crop evapotranspiration (r ¼ 0.98).

In this study, the SR values changed from 1.83 to 2.32 between DAP 44 and 63. After DAP
63, the SR values increased and peaked (6.40) on DAP 87. In previous studies,57 SR was found to
be one of the most efficient vegetation indices to monitor different irrigation levels’ effect.

Generally, the EVI values among the treatments did not differ significantly until DAP 50.
However, from this date to DAP 87, the EVI values increased regularly. The maximum EVI was
0.23 on DAP 87, and the minimum was 0.05 on DAP 44. The maximum and minimum values
were obtained from the S1 and S4 treatments, respectively.

Figure 5 shows the bell pepper canopy volumes calculated from UAV images. As shown in
Fig. 5, the results indicate that canopy volumes are associated with irrigation treatments. The
maximum and minimum volumes were obtained on DAP 103 in plot 1 (S1) and DAP 44 in plot
12 (S4), respectively. Another significant result of this study was that the canopy volumes
increased regularly from DAP 44 to 103. This result is consistent with that of Ref. 58, which
found that the bell pepper canopy width and height increased with irrigation level and time.
In another study conducted in Tarsus, Turkey, bell pepper crop heights were associated with
irrigation regimes.45 On the other hand, the result of this study is inconsistent with that in
Ref. 59, which concluded that crop height and irrigation amounts do not differ significantly.
This inconsistency may be attributable to different bell pepper growing environments, climate,
soil properties, and irrigation practices.

Fig. 5 Variation of bell pepper canopy volume values of all experiment plots at UAV flight cam-
paign days.
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3.4 Evaluation of Bell Pepper Yield Models

Statistically significant differences in the correlation coefficient related to a comparison of the
vegetation indices and yield throughout the bell pepper growing season are shown in Fig. 6.
Further, the summary statistical results of linear regression models developed to estimate bell
pepper yield using vegetation indices are given in Table 5.

Fig. 6 Changes in correlation coefficients of linear relation between vegetation indexes and bell
pepper yield among UAV flight days.

Table 5 Summary result of regression analysis between vegetation indexes and bell pepper yield
values.

DAP 44 49 56 63 72 87 103

NDVI a 146.7 232.1 263.2 159.2 149.4 160.7 227.4

b −14.3 −44.6 −57 −51 −56.8 −72 −116.3

R2 0.09 0.13 0.69* 0.59* 0.48* 0.76* 0.76*

RMSE (tons ha−1) 8.5 8.6 4.9 5.6 7.0 4.3 4.5

SAVI a 208.1 288.6 305.9 163.8 159 157 251.3

b −19.1 −46.1 −56.3 −40.7 −47.7 −55 −101.6

R2 0.1 0.15 0.72* 0.60* 0.48* 0.86* 0.74*

RMSE (tons ha−1) 8.4 8.5 4.7 5.6 7 3.3 4.7

SR a 33.4 71.8 56.5 16.7 9.7 9.3 12.8

b −32.3 −110.8 −82.6 −21.7 −6.6 −12.8 −29.9

R2 0.09 0.19* 0.71* 0.58* 0.41* 0.81* 0.78*

RMSE (tons ha−1) 8.4 8.7 4.7 5.7 7.4 3.9 4.4

EVI a 874.3 652.7 823.7 434.9 575.8 305.2 607.6

b −18.6 −13.5 −62.9 −22.4 −44.1 −18.5 −54.6

R2 0.11 0.10 0.82* 0.62* 0.71* 0.87* 0.62*

RMSE (tons ha−1) 8.3 8.4 3.8 5.4 5.3 3.1 5.7

*p < 0.01.
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The threshold values of the correlation coefficients were 0.68 and 0.55 at p < 0.01 and
p < 0.05, respectively. According to the p < 0.05 level, the seasonal bell pepper yield
can be estimated after DAP 49 using the NDVI and after 56 using the SAVI, SR, and EVI
indices.

NDVI has a more extended yield estimation period than the other vegetation indices. Bell
pepper yield can be estimated using NDVI values between DAP 49 and 103 at the p < 0.01

significance level. Generally, the error in the bell pepper yield estimation decreased from
DAP 49 to 103 when NDVI was used. Thus, the level of success in estimating yield increased
as DAP 103 approached. Although the highest correlation between NDVI and yield was found
on DAP 103, the lowest RMSE (4.3 tons ha−1) was found on DAP 87.

The SAVI values calculated from high-resolution UAV images between DAP 56 and 103
estimated bell pepper yield successfully at the p < 0.01 level. The highest correlation coefficient
(r ¼ 0.93) was found on DAP 87, and the RMSE value of the estimated yield was 3.3 tons ha−1.
The lowest correlation coefficient (r ¼ 0.32) was obtained on DAP 44, and was not statistically
significant.

Bell pepper yield can be estimated using SR between DAP 49 and 103 at the p < 0.05

significance level. At the p < 0.01 level, SR can be used to estimate bell pepper yield between
DAP 49 and 103, except for DAP 72, which was not significant at p < 0.01, but was at p < 0.05.
The SR’s highest and lowest correlation coefficient was 0.90 on DAP 87 and 0.30 on DAP 44,
respectively.

Generally, EVI has a higher correlation with estimates of bell pepper yield than the other
vegetation indices. The bell pepper yield could be estimated with minimum estimation error
(RMSE ¼ 3.2 tons ha−1) using EVI on DAP 87. The regression analysis between yield and the
EVI value on DAP 87 had an R2 of 0.81 (p < 0.01).

This study found that vegetation indices (NDVI, SAVI, SR, and EVI) can be used to estimate
bell pepper yield between DAP 56 and 103. These results reflect those of Ref. 60, in which a field
experiment was conducted to monitor bell pepper vegetation using a spectroradiometer under
different irrigation conditions. The authors concluded that SR can be used successfully to esti-
mate bell pepper yield (r ¼ 0.90). According to Ref. 17, sunflower yield is correlated highly
with the NDVI values calculated from UAV images. In another study, pasture yield was estimated
using the NDVI and SR that were calculated from high-resolution UAV images,61 while Ref. 62
reported that EVI can be used to estimate soybean yield.

The results of the correlation analysis between the bell pepper canopy volume and yield are
given in Table 6. From the data, it is apparent that the correlation coefficient values increased
from DAP 44 to 103. The highest and lowest correlation coefficients were 0.97 on DAP 103 and
0.32 on DAP 56. On DAP 103, there was a significant linear relation between the canopy volume
and yield values with a R2 value of 0.93 (p < 0.01, Fig. 7). The RMSE value of this yield esti-
mation was 2.3 tons ha−1. These results are consistent with those obtained by Ref. 63, which
found a high correlation (r ¼ 0.88) between orange yield and canopy volume and Ref. 64, which

Table 6 Summary result of regression analysis between bell pepper canopy volume and yield
values.

DAP 44 49 63 72 87 103

Bell pepper canopy volume a 15.41 7.21 11.93 9.56 10.43 7.66

b 2.05 17.08 4.35 5.44 −0.04 2.46

R2 0.12 0.10 0.73 0.58 0.81 0.93

RMSE (tons ha−1) 8.3 8.3 8.1 5.7 3.8 2.3

Coefficient of correlation 0.35 0.32 0.85* 0.76* 0.90* 0.97*

*p < 0.01.
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used a light detection and ranging sensor to calculate walnut tree canopy volume and reported
that there was a linear relation between tree volume and yield (R2 ¼ 0.77).

4 Conclusion

In this study, bell pepper yield was estimated with NDVI, SAVI, SR, EVI, and canopy volume.
UAV images were acquired on seven dates between DAP 44 and 103 at 40-m above ground level
with a 2-cm spatial resolution. A linear regression analysis was performed between the yield and
vegetation indices. The regression analysis results showed that bell pepper yield can be estimated
using the vegetation index between DAP 56 and 103 at a significance level of 0.01. EVI was the
best vegetation index to estimate yield with the minimum estimation error among the vegetation
indices. According to the results of this study, bell pepper yield can be estimated on DAP 87
using the equation of yield ¼ 305.2EVI − 18.54 to generate yield maps. These maps can help
farmers to estimate bell pepper yield during the growing season, and contribute to evaluating
agricultural practices to obtain the maximum yield. Further, policymakers can use yield maps to
balance market prices, and they also have considerable potential for use in the agricultural insur-
ance sector.

The relation between bell pepper yield and canopy volume was examined in this study. The
results showed that yield estimation error decreased near DAP 103. The result of the regression
analysis between canopy volume and yield on DAP 87 showed that the highest R2 was 0.93 and
the lowest RMSE was 2.1 tons ha−1. In general, canopy volumes performed better than vegeta-
tion indices to estimate yield, which indicates that bell pepper canopy volumes can be used
successfully to estimate yield. While calculating canopy volume is difficult, time-consuming,
and tedious in field conditions, high-resolution UAV images can be used to do so rapidly,
precisely, and at lower cost.

This study was one of the first attempts to examine bell pepper yield estimation thoroughly
using high-resolution vegetation index maps and canopy volumes. More research is needed to
understand the relation between yield and vegetation indices/canopy volume better. Thus, further
research under controlled experimental conditions is recommended in different climatic condi-
tions and with other crops. Moreover, studies are needed on multispectral sensor quality, flight
altitude, and timing.
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